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Foreword 

In recent years, artificial intelligence (AI) has soared to the top of the political and business 
agenda. Once a mostly academic pursuit, it has evolved into an industry with trillions of 
dollars at stake. Despite significant uncertainties, it is now very clear: AI is coming. In many 
sectors, it is already here.  

This has major consequences for the global energy sector. There is no AI without energy – 
specifically electricity. At the same time, AI has the potential to transform the sector’s future. 
However, policy makers and the market have often lacked the tools to fully understand these 
wide-ranging impacts. Recognising this gap, the International Energy Agency (IEA) stepped 
up to address it by leveraging our expertise in data collection and analysis, as well as our 
convening power, to inform and strengthen the global dialogue on these issues. 

We began a new workstream on the nexus of energy and AI over a year ago, which has 
resulted in a series of key activities and outputs, culminating in this special report. In 
December 2024, we held the Global Conference on Energy and AI, the largest international 
gathering on the matter to date, at our headquarters in Paris. It brought together policy 
makers, the tech sector, the energy industry and international experts to discuss the critical 
issues at play. This helped lay groundwork for the AI Action Summit, co-chaired by President 
Emmanuel Macron of France and Prime Minister Narendra Modi of India, in February 2025 
– an event to which the IEA made crucial contributions.

This special report advances the conversation further. It is the first comprehensive global 
analysis examining all aspects of the links between energy and AI – from pathways to securely 
and sustainably meeting energy demand for AI, to how AI itself could transform the 
production, consumption and transport of energy around the world. The analysis explores 
the implications of the rise of AI on energy security, investment, emissions and more – 
providing a strong factual basis for those thinking through the challenges and opportunities 
ahead. 

This report shows that electricity demand for AI is growing fast globally, even if other sources 
of demand are growing faster. In some parts of the world, the effects of AI on electricity 
systems are set to be very significant. With this in mind, we suggest three pillars countries 
should bear in mind as they plan for the future.  

The first is the importance of finding the right mix of energy sources to deliver the 
uninterrupted power supply that data centres need to support AI. According to our analysis, 
there is a role for established technologies such as renewables and natural gas, as well as 
emerging technologies like small modular nuclear reactors (SMRs) and advanced 
geothermal. Deciding which options to prioritise may depend on other policy priorities. 

Yet a sole focus on increasing electricity generation won’t be enough. To deliver the energy 
for AI, countries must also think about their infrastructure. That will mean accelerating 
investment in grids – and working to ensure that data centres, as well as the wider electricity 
system, are as efficient and flexible as possible.   
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Making this a reality will hinge on the final pillar: bolstering dialogue between policy makers, 
the tech sector and energy industry. This is an area in which the IEA is proud to have taken a 
leadership role – and will continue to do so.  

AI could also be an incredibly powerful tool for the energy sector. It is already helping energy 
companies optimise their approaches to exploration, production, maintenance and safety – 
and if AI tools are applied broadly, huge amounts of electricity transmission capacity could 
be unleashed without building a single new line. Yet our analysis shows the sector must do 
more to seize the moment. This, too, will require strong collaboration between the public 
and private sector on key issues such as building digital skills in the energy workforce. 

The unknowns that remain – from macroeconomic uncertainties to what the most popular 
AI applications will be – cannot stand in the way of action. As the digitalisation of the global 
economy advances, the energy sector and the tech industry will become increasingly 
intertwined. Our hope is that this report will help those preparing for this new era. 

I would like to commend the talented IEA team behind this analysis – with special thanks to 
lead authors Thomas Spencer and Siddharth Singh, overseen by our Director of Sustainability, 
Technology and Outlooks Laura Cozzi. Their work demonstrates the IEA’s aptitude for 
tackling key emerging topics with authority and providing stakeholders around the world 
with the energy information they need the most. 

 

Dr Fatih Birol 
Executive Director 

International Energy Agency 
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Executive Summary 

The transformative potential of AI depends on energy 

There has been a step change in the capabilities of artificial intelligence (AI), driven by 
falling computation costs, a surge in data availability and technical breakthroughs. AI is the 
science of making machines capable of learning to perform tasks that traditionally required 
human intelligence. AI is emerging as a general-purpose technology, much like electricity. 
Today, it can generate text and videos, accelerate scientific discovery in fields like medicine 
or materials science, make manufacturing robots smarter and more productive, drive 
commercial taxis in complex city landscapes, and detect threats to critical infrastructure.  

In the past few years, AI has gone from an academic pursuit to an industry with trillions of 
dollars of market capitalisation and venture capital at stake. The market capitalisation of 
AI-related firms in the S&P 500 has grown by around USD 12 trillion since 2022. While there 
are several uncertainties about its uptake and impact, AI’s rapid development and huge 
potential have made it central to corporate strategies, economic policies and geopolitics. 

However, there is no AI without energy; at the same time, AI has the potential to transform 
the energy sector. Affordable, reliable and sustainable electricity supply will be a crucial 
determinant of AI development, and countries that can deliver the energy needed at speed 
and scale will be best placed to benefit. Training and deploying AI models takes place in large 
and power-hungry data centres. A typical AI-focused data centre consumes as much 
electricity as 100 000 households, but the largest ones under construction today will 
consume 20 times as much.  

Policy makers and markets have lacked the tools to assess implications 

The energy sector is therefore at the heart of one of the most important technological 
revolutions today. However, there is still a lack of understanding of the stakes and 
implications of this deepening connection between energy and AI. Consistent with its strong 
track record of identifying and exploring emerging issues in the energy sector, this new 
International Energy Agency (IEA) special report seeks to fill this gap with the most 
comprehensive, data-driven analysis on the topic to date. Based on a new global model and 
comprehensive dataset of data centre electricity demand, its analysis was also enriched by 
an in-depth process of consultation with policy makers, the tech sector, the energy industry 
and other experts. 

Data centres account for a small share of global electricity consumption 
today, but their local impacts are far more pronounced  

Global investment in data centres has nearly doubled since 2022 and amounted to half a 
trillion dollars in 2024. This investment boom has led to growing concerns about 
skyrocketing electricity demand. 
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Data centres accounted for around 1.5% of the world’s electricity consumption in 2024, or 
415 terawatt-hours (TWh). The United States accounted for the largest share of global data 
centre electricity consumption in 2024 (45%), followed by China (25%) and Europe (15%). 
Globally, data centre electricity consumption has grown by around 12% per year since 2017, 
more than four times faster than the rate of total electricity consumption. AI-focused data 
centres can draw as much electricity as power-intensive factories such as aluminium 
smelters, but they are much more geographically concentrated. Nearly half of data centre 
capacity in the United States is in five regional clusters. The sector accounts for substantial 
shares of electricity consumption in local markets.  

Electricity demand for data centres more than doubles by 2030  

Data centre electricity consumption is set to more than double to around 945 TWh by 2030. 
This is slightly more than Japan’s total electricity consumption today. AI is the most important 
driver of this growth, alongside growing demand for other digital services. The United States 
accounts for by far the largest share of this projected increase, followed by China. In the 
United States, data centres account for nearly half of electricity demand growth between 
now and 2030. By the end of the decade, the country is set to consume more electricity for 
data centres than for the production of aluminium, steel, cement, chemicals and all other 
energy-intensive goods combined. Uncertainties widen further after 2030, but our Base Case 
sees global data centre electricity consumption rising to around 1 200 TWh by 2035. 

A diverse range of sources will be needed to meet demand 

Renewables and natural gas take the lead in meeting data centre electricity demand, but 
a range of sources are poised to contribute. Half of the global growth in data centre demand 
is met by renewables, supported by storage and the broader electricity grid. Renewables 
generation is projected to grow by over 450 TWh to meet data centre demand to 2035, 
building on short lead times, economic competitiveness and the procurement strategies of 
tech companies. Dispatchable sources, led by natural gas, also have a crucial role to play, 
with the tech sector helping to bring forward new nuclear and geothermal technologies as 
well. Natural gas expands by 175 TWh to meet growing data centre demand, notably in the 
United States. Nuclear contributes about the same amount of additional generation to meet 
data centre demand, notably in China, Japan and the United States. The first small modular 
reactors come online around 2030. 

Data centres are one of several drivers of accelerated electricity demand 
growth in the Age of Electricity  

Data centres account for around one-tenth of global electricity demand growth to 2030, 
less than the share from industrial motors, air conditioning in homes and offices, or electric 
vehicles. However, the significance of data centres in driving electricity demand differs by 
country. Emerging and developing economies are already experiencing rapid electricity 
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demand growth. In these countries, data centres account for around 5% of the increase in 
electricity demand to 2030. Advanced economies, on the other hand, have seen several 
decades of essentially stagnant electricity demand. In this group of countries, data centres 
account for more than 20% of demand growth to 2030, presenting a wake-up call on the 
need to put the electricity sector on a growth footing again. 

Smarter is faster when it comes to integrating data centres in electricity grids 

Electricity grids are already under strain in many places: we estimate that unless these risks 
are addressed, around 20% of planned data centre projects could be at risk of delays. Grid 
connection queues for both supply and consumption projects, including data centres, are 
long and complex. Building new transmission lines can take four to eight years in advanced 
economies and wait times for critical grid components such as transformers and cables have 
doubled in the past three years. Generation equipment is also in high demand. Turbine 
deliveries for new gas-fired power plants now face lead times of several years, potentially 
delaying their commissioning beyond 2030. If the electricity sector does not step up, there is 
a risk that meeting data centre load growth could entail trade-offs with other goals such as 
electrification, manufacturing growth or affordability.   

Key options to mitigate these risks include locating new data centres in areas of high power 
and grid availability, and operating either data centre servers or their onsite power 
generation and storage assets more flexibly. These strategies are still underexplored. An AI- 
focused data centre is 10 times more capital-intensive than an aluminium smelter, which 
means curtailing its operations to provide flexibility to the grid is very costly. But many data 
centres operate with a buffer of spare server capacity. Regulators could explore measures to 
incentivise data centre operators to use spare server capacity or their backup power 
generation or storage assets more flexibly. Grid operators could also examine incentives to 
locate data centres in areas where grids are less constrained. We find that 50% of data 
centres under development in the United States are in pre-existing large clusters, potentially 
raising risks of local bottlenecks.  

There are large uncertainties in the outlook for AI-related electricity demand 

There are uncertainties in how quickly AI will be adopted, how capable and productive it 
will become, how fast efficiency improvements will occur, and whether bottlenecks in the 
energy sector can be resolved. These uncertainties are explored in sensitivity cases. A Lift-
Off Case assumes higher rates of AI uptake and proactive action to reduce energy sector 
bottlenecks. A Headwinds Case incorporates bottlenecks – including macroeconomic 
headwinds – in the uptake of AI and the buildout of energy infrastructure to power it. Our 
High Efficiency Case highlights the potential for even stronger gains in the efficiency of AI-
related hardware and AI models. In this case, electricity demand from data centres is 20% 
lower in 2035 than in the Base Case. By 2035, the range of data centre electricity demand 
across our cases spans from 700 to 1 700 TWh. The increase in gas-fired power to meet data 
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centre demand in our Lift-Off Case is four times higher than in our Headwinds Case. Growth 
in nuclear output to meet data centre demand varies even more.   

AI could unlock major efficiency and operational gains for the energy sector 

AI is already being deployed by energy companies to transform and optimise energy and 
mineral supply, electricity generation and transmission, and energy consumption. There 
are numerous objectives in play, including reducing costs, enhancing supply, extending asset 
lifetimes, reducing downtime and lowering emissions. 

The oil and gas industry has been an early adopter of AI, using it to optimise exploration, 
production, maintenance and safety. In exploration and development, AI can make the 
evaluation of resources more reliable and reduce predrilling uncertainty. In operations, it is 
being used to optimise and automate production processes, detect leaks, predict 
maintenance needs, and support efforts to reduce methane emissions. 

AI can help to balance electricity networks that are growing more complex, decentralised 
and digitalised. AI can improve the forecasting and integration of variable renewable energy 
generation, reducing curtailment and emissions. AI-based fault detection can help rapidly 
identify and precisely pinpoint grid faults, reducing outage durations by 30-50%. Remote 
sensors and AI-based management can increase the capacity of transmission lines. Up to 175 
gigawatts (GW) of transmission capacity could be unlocked if these tools are applied, without 
any new lines being built. This is more than the increase in the data centre power load to 
2030 in the Base Case.    

The industry of the future will be increasingly digitalised and automated; countries and 
companies that take the lead in integrating AI into manufacturing will jump ahead. AI 
applications can accelerate product development, lower costs and increase quality. 
Widespread adoption of existing AI applications to optimise processes in industry can lead 
to energy savings equivalent to more than the total energy consumption of Mexico today. 
European companies have over half of the market share for industrial automation solutions, 
which are the critical enabler for industrial AI deployment.   

AI applications in transport can improve efficiency and save costs, but they could also 
increase demand for personal mobility. AI applications are being used to manage traffic, 
optimise routes, predict maintenance needs and develop autonomous vehicles. The 
widespread adoption of AI applications across the transport sector could lead to energy 
savings equivalent to the energy used by 120 million cars. While autonomous vehicles 
operate more efficiently than conventional ones, they might also attract people away from 
public transport as costs fall and availability increases, leading to rebound effects.  

In buildings, there is significant potential for AI-led optimisations to make heating and 
cooling systems more efficient and electricity use in buildings more flexible. Barriers to 
realising this potential include fragmented ownership of buildings, lack of digitalisation and 
inadequate incentives. If scaled up, existing AI-led interventions could lead to global 
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electricity savings of around 300 TWh, equivalent to annual electricity generation today for 
Australia and New Zealand combined. 

Accelerated innovation could be one of the most significant longer-term 
impacts of AI on the energy sector 

AI is emerging as a powerful tool for scientific discovery, helping researchers to find, test 
and commercialise innovations faster. In biomedicine, for example, AI led to a 45 000-fold 
acceleration in the mapping of protein structures – critical for designing new drugs. 
Innovation lead times for new energy technologies often span decades. Reducing this period 
will be key to achieving energy sector goals such as sustainability and competitiveness. Yet 
only 2% of the equity raised by energy start-ups has gone to companies with an AI-related 
value proposition.       

Energy innovation challenges are characterised by the kinds of problems AI is good at 
solving. For example, only 0.01% of next-generation solar PV materials have been 
experimentally produced, leaving a huge set of possible materials still to be explored. AI 
could allow scientists to dramatically accelerate the process of finding and testing promising 
materials, battery chemistries and carbon capture molecules. Policy will be required to 
support AI-led invention and also accelerate commercialisation, which is often a bigger 
impediment to new products than the discovery phase. 

The energy sector is not yet making the most of AI 

Energy is amongst the most complex and critical sectors in the world today, yet it can and 
should do more to seize the potential benefits of harnessing AI. The energy sector faces 
barriers to realising the widespread adoption of AI, including missing or inadequate access 
to data and digital infrastructure and skills, as well as persistent digital and physical security 
concerns, which often trump potential efficiency gains. The prevalence of AI-related skills is 
much lower in the energy sector compared with other sectors. Policy and regulatory changes 
will be needed to enable the energy sector to seize the benefits of AI. 

AI could sharpen some energy security concerns and help address others 

The supply chains for the components going into data centres are complex and globalised. 
For example, gallium is an increasingly critical metal used in cutting-edge computer chips and 
power electronics, offering significant efficiency benefits compared with traditional silicon-
based semiconductor designs. China currently accounts for around 99% of global refined 
gallium supply. Our estimates indicate that in 2030, demand for gallium for data centres 
could reach over 10% of today's supply.  

AI compounds some energy security risks, but it also offers solutions in both the cyber and 
physical domains. As AI capabilities increase, so does the capacity for them to be used and 
misused by various actors. Cyberattacks on energy utilities have tripled in the past four years 
and have become more sophisticated because of AI. At the same time, AI is becoming a 
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critical tool to defend against them. In the physical domain, AI-equipped satellites and 
sensors can detect incidents in critical energy infrastructure 500 times faster than traditional 
ground-based methods and at high spatial resolutions. As the nature of energy security 
evolves, the IEA will continue to monitor this critical issue.  

Emerging and developing economies can leapfrog to AI solutions  

Emerging and developing economies other than China account for 50% of the world’s 
internet users but less than 10% of global data centre capacity. Countries with a record of 
reliable and affordable power will be best placed to unlock data centre growth, localise the 
computing power that is critical to homegrown AI development, and spur the IT industry 
more generally. Data centres can also be anchors for new low-emissions power projects. 
However, in regions with frequent power outages or power quality issues, maintaining a data 
centre can be risky or costly, making overseas hosting more appealing for businesses. There 
have also been promising use cases of AI in developing economies that have helped unlock 
new efficiencies and optimise processes. Overcoming barriers to digitisation can help such 
economies leapfrog to AI solutions that offer cost and time savings.   

Concerns that AI could accelerate climate change appear overstated, as do 
expectations that AI alone will address the issue  

Emissions from electricity use by data centres grows from 180 million tonnes (Mt) today to 
300 Mt in the Base Case by 2035, and up to 500 Mt in the Lift-Off Case. While these 
emissions remain below 1.5% of the total energy sector emissions in this period, data centres 
are among the fastest growing sources of emissions.  

The widespread adoption of existing AI applications could lead to emissions reductions 
that are far larger than emissions from data centres – but also far smaller than what is 
needed to address climate change. We estimate that emissions reductions from the broad 
application of existing AI-led solutions to be equivalent to around 5% of energy-related 
emissions in 2035. Various barriers to AI adoption will need to be overcome to unlock these 
gains. Rebound effects – for example from modal shifts away from public transport to 
autonomous cars – could undercut some of these benefits. AI can be a tool in reducing 
emissions, but it is not a silver bullet and does not remove the need for proactive policy. 

With energy and tech now on a journey together, collaboration is key    

The tech sector and energy industry are more intertwined than ever before. There are large 
uncertainties on the path ahead, but these should not get in the way of concerted action. 
Delivering the energy for AI, and seizing the benefits of AI for energy, will require even deeper 
dialogue and collaboration between the tech sector and the energy industry. Along the way, 
there will be risks to manage. The IEA will continue to provide data and robust analysis to 
inform decision making and help the energy and technology sectors be better prepared as 
the adoption of AI unfolds.  

https://wmo.int/media/news/igniting-change-5-ai-innovations-help-extinguish-wildfire-risks#:%7E:text=for%20detecting%20fires-,500,-times%20faster%20than
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Chapter 1 

The rise of AI and its nexus with energy 
A new paradigm emerges 

 

• Artificial intelligence (AI) is emerging as one of the most consequential technologies 
of the 21st century. Recent breakthroughs have injected enormous momentum. The 
amount of computation used to train a state-of-the-art AI model has increased by 
around 350 000 times since 2014. AI can already generate text, videos and audio; 
predict complex systems like the weather; make robots smarter and more flexible; 
automate online workflows; and sense and interpret the physical world. 

• As models have become much more capable, AI has become an industry with billions 
of dollars of annual investment and trillions of dollars of financial market value at 
stake. Of the USD 16 trillion increase in market capitalisation of S&P 500 companies 
since 2022, USD 12 trillion has come from AI-related companies. 

• Among large companies, AI adoption rates rose from slightly over 15% of firms using 
AI in 2020 to nearly 40% in 2024. However, smaller firms use AI much less, with 
missing expertise appearing to be a key constraint. Among households, AI use is highly 
globalised: over 40% of online populations in countries as diverse as Brazil, India, 
Indonesia and the United States report regularly using generative AI. 

• AI is a product of extremely complex supply chains. The machine tools used to make 
high-end chips are among the most complex machines in existence today, and their 
production is dominated by Europe. Chip production is concentrated in East Asia, with 
the largest company holding a 65% share. The United States dominates AI model 
development and deployment, although China has also made strides recently. 

• The rise of AI has huge implications for energy. AI model training and use takes place 
in large data centres, with global investment in these facilities doubling since 2022. A 
large data centre can consume as much electricity as 100 000 households. The largest 
currently under construction could consume as much as 2 million households. 

• Hardware and software efficiencies of AI models are improving rapidly. In test 
conditions, we estimate that querying an AI model currently takes around 2 watt-
hours for language generation, at least twice that for large reasoning models like 
DeepSeek-R1, and around 25 times as much to generate a short video. Real-world 
implementation may be more efficient, but lack of data on the energy consumption 
of commercial models inhibits assessment.  

• This report explores how much energy AI will need, what the uncertainties are in the 
outlook, and what sources will help meet this demand. It addresses how AI can be 
applied in the energy sector and how it can contribute to making the energy system 
more secure, affordable and sustainable. It also explores the broader ramifications for 
energy security, innovation and investment, and the energy policy landscape.  

S U M M A R Y  
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1.1 Introduction  

Artificial intelligence (AI) is emerging as one of the most consequential technologies of the 
21st century. It has the potential to transform society and the economy. It also has significant 
implications for the energy sector. The world – including the energy sector – may be on the 
cusp of changes as significant as those brought about by electricity or the Internet. 

Seizing the potential benefits of AI will depend on a better understanding of both the risks 
and opportunities – and this holds for the energy sector too. On the one hand, rapidly 
growing investment in data centres is already straining grids in some places and raising 
concerns about the ability of the electricity system to meet a surge in demand. On the other 
hand, there are many potentially beneficial use cases for AI in the energy sector, from 
accelerating technological innovation and optimising the operation of electricity systems to 
making resource exploration more efficient and improving weather forecasting and the 
resilience of energy systems to disruptions. 

The International Energy Agency (IEA) has been working on the nexus between energy and 
digitalisation and data centres for several years. The IEA first published a special report on 
digitalisation and energy in 2017 (IEA, 2017), and has been expanding its analytical and 
modelling capacities, data collection and policy recommendations in this field since then. 
Recognising the need for global dialogue on energy and AI, the IEA organised the Global 
Conference on Energy and AI in December 2024, the largest-ever gathering of the technology 
and energy industries, governments and civil society to discuss the energy sector implications 
of the rise of AI. This conference in turn contributed to the AI Action Summit held in Paris in 
February 2025. 

This special report on energy and AI analyses further the major themes that emerged from 
the conference. It aims to answer two related questions. First, how much energy will AI need 
and what sources will help meet this demand? And second, how can applying AI in the energy 
sector contribute to making the energy system more secure, affordable and sustainable? 

The report is divided into five chapters: 

 This introductory chapter looks at the broader context of the rise of AI and makes the 
link between energy and AI. 

 Chapter 2 analyses the trends in energy demand from data centres and how to meet it. 

 Chapter 3 looks at the application of AI to optimise the energy sector. 

 Chapter 4 addresses the role of AI in advancing technology innovation in the energy 
sector. 

 Chapter 5, the final chapter, discusses the implications of these trends for governments, 
industry and people. 
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1.2 The rise of AI 

AI has a long history, dating back to at least the 1950s. Over time, it has seen a series of 
alternating periods of optimism and pessimism (so-called “AI winters”). In recent years, 
however, AI has been dramatically boosted by several developments and breakthroughs in 
techniques, costs and technology that have led to the rise of AI in its modern form that we 
are familiar with today, in particular generative AI. These developments include (Figure 1.1): 

 The massive increase in computing power and decline in cost due to exponential 
improvements in computing hardware performance. Comparing today with 2006, the 
cost of a graphics processing unit (GPU – a specialised computer chip widely used for AI) 
per unit of computation has decreased by more than 99%.  

 The exponential increase in the availability and quality of data used to train AI models 
due to the rise of the Internet and connectivity. The amount of data used to train state-
of-the-art AI models has increased by nearly 30 000 times since 2008. 

 Breakthroughs in the architectures and algorithms behind AI models, notably the rise of 
deep neural networks (section 1.3), enabling the development of exponentially larger 
and more capable models. The amount of computational power used to train state-of-
the-art AI models has increased by around 350 000 times since 2014.  

These advancements have led to AI models that are becoming ever more powerful, capable 
and flexible. In the last few years, AI has gone from a field of academic research to an industry 
driving hundreds of billions of dollars of investment annually and with trillions of dollars of 
financial market value at stake. 

Figure 1.1 ⊳ GPU computation cost, 2006-2024, and notable AI model 
computational training size, 2014-2024 

 
IEA. CC BY 4.0. 

In the past decade, cheaper computing, exponentially more data and research 
breakthroughs in model design have turbocharged AI model capabilities 

Sources: IEA analysis based on data from EpochAI (2024), and Coyle and Hampton (2024). 
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1.2.1 Surging expectations in financial markets 

Capitalising on the perceived potential of AI, technology companies have come to dominate 
the stock market – notably in the United States, which hosts some of the world’s largest 
technology companies. From November 2022 – when ChatGPT launched – to the end of 
2024, 65% of the growth in market capitalisation of the S&P 500 came from companies that 
either deploy AI or integrate AI into their core operations. That is, of the USD 16 trillion rise 
in market capitalisation of S&P 500 companies, USD 12 trillion came from AI-related 
companies alone. This period was marked by a surge in AI-related investor expectations, 
before the recent volatility in financial markets. AI-focused start-ups in the United States 
have also grown in value faster than non-AI start-ups (Figure 1.2). In 2024, by the time start-
ups reached their fourth round of funding, AI-focused start-ups had an average valuation five 
times higher than that of other start-ups.  

Figure 1.2 ⊳ Market capitalisation of S&P 500 companies, November 2022 
and November 2024, and median valuations of United States-
based start-ups, 2024 

 
IEA. CC BY 4.0. 

Both listed and unlisted AI-focused companies have outpaced  
non-AI companies in the stock markets and in raising valuations 

Notes: MER = market exchange rate. AI-focused S&P 500 companies include technology companies that have 
key AI offerings or have integrated AI into their operations in a significant way. Valuations of start-ups are pre-
money, and rise with the stage of investment, from seed (initial funding, often to get the company operations 
started) to series A (first major round of funding that establishes a business model and helps the company 
scale), series B (second major funding round that helps companies scale further) and series C (usually for well-
established companies looking to accelerate expansion).  

Sources: IEA analysis based on data from Bloomberg Terminal (n.d.) and Crunchbase (n.d.). 
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reported to be planning as much as USD 300 billion in AI-related capital expenditure in 2025. 
This is over 20% higher than the total power sector investment in the United States. Box 1.1 
explores the interplay between AI-driven investment in data centres and its implications for 
the energy sector.  

Box 1.1 ⊳ Rising ICT investment: a longer-term perspective  

Investment in capital- and energy-intensive data centres depends, among other factors, 
on expectations for future AI demand and future earnings from AI monetisation. For this 
reason, the energy sector has an important stake in the debate on the economic outlook 
for AI. Surging investment, high equity prices and lofty valuations for unlisted start-ups 
have raised concerns about whether AI could be a “bubble”.  

In recent years, information and communication technology (ICT) investment as a share 
of gross domestic product (GDP) in the United States has been at the highest it has been 
in three decades. The previous peak was in 2000, during the “dotcom bubble” 
(Figure 1.3). The recent uptick seen since 2015 has been led by a rise in investment in 
corporate software and in data centres and networks. 

Figure 1.3 ⊳ Investment in ICT-related assets and infrastructure as a share 
of GDP, United States, 1995-2023 

 
IEA. CC BY 4.0. 

ICT investment has grown to around 5.5% of US GDP in recent years,  
higher than at any other time since the 2000 dotcom bubble 

Source: IEA analysis based on data from US Bureau of Economic Analysis (2024). 

Historically, several major technological innovations have been accompanied by large 
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infrastructure, adjustment of business models or an upgrading of skills. For example, 
from Nikola Tesla’s invention of the alternating current electric motor in 1887, it took 
nearly 40 years for electricity to overtake steam power as the largest source of 
mechanical power in US factories (Divine, 1983). This was despite factory electrification 
doubling the rate of annual productivity improvement in US manufacturing. 

For the energy sector, lead times for assets and infrastructure are much longer than for 
data centres (see Chapter 2). To enable robust decision making and avoid stranded asset 
risk, the energy sector needs a clearer understanding of the outlook for AI-related 
electricity demand, while acknowledging unavoidable uncertainties. This includes the 
economics, uptake and service demand outlook for AI. 

1.2.2 How do households and businesses use AI? 

The application of AI is becoming pervasive in modern life and the economy. This has been 
enabled by growing access to high-speed Internet. Globally, there are over 90 mobile 
broadband subscriptions per 100 people, up from 75 subscriptions per 100 people five years 
ago. Half of the world’s population now lives in areas covered by a 5G mobile network. As a 
result, Internet traffic has been growing strongly. Total Internet traffic – both fixed and 
mobile broadband – has increased more than three times since 2019 (Figure 1.4). This 
growing digitalisation of the world economy provides the foundation for AI.  

Figure 1.4 ⊳ Global digital connectivity indicators and internet traffic,  
2019-2024 

 
IEA. CC BY 4.0. 

The growing digitalisation of the world economy provides the foundation for AI;  
since 2019, total Internet traffic has increased more than three times 

Source: IEA analysis based on data from ITU (n.d.). 
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Since 2022 and the launch of ChatGPT, the breakthrough commercial product for generative 
AI, the use of generative AI, such as text- or image-based tools, has surged. Within two years 
of ChatGPT’s launch, around 40% of households in the United States and the United Kingdom 
were using such tools. ChatGPT had 400 million weekly active users globally in February 
2025. Building on infrastructure availability, ownership of computing devices and familiarity 
with software, it was able to reach its first 1 million users within five days of launch, 
compared with 2-10 months for popular social media applications. AI tools are now being 
widely integrated into mainstream software applications, including email, chat and social 
media.  

AI uptake is already quite globalised. As a share of the online population, over 50% of survey 
respondents report using generative AI at least weekly in countries like Brazil, India, 
Indonesia, Kenya and Pakistan. Among people who are already online, the adoption rate of 
generative AI is higher among lower-income countries. However, a significant share of the 
population in lower-income countries does not have regular access to the Internet (less than 
one in three in Kenya and Pakistan, for example), so overall adoption at the population level 
remains lower. The role of AI in emerging and developing economies is explored further in 
Chapter 5.  

Figure 1.5 ⊳ Growth in the use of digital technologies in the workplace since 
the year of first commercial release, United States 

 
IEA. CC BY 4.0. 

There has been a rapid uptake of generative AI applications in the workplace, enabled by 
the widespread adoption of personal computers and the Internet in US workplaces  

Note: For personal computers, year zero is 1981, the year the first IBM Personal Computer was released; for 
the Internet, year zero is 1995, the year the Internet first carried commercial traffic; for generative AI, year 
zero is 2022. 

Sources: IEA analysis based on data from Bick et al. (2024). 
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Firms are increasingly deploying AI for a variety of use cases, from data analysis and 
forecasting to process automation, text generation and analysis, and cybersecurity. Official 
surveys of AI use in firms highlight several interesting trends. First, AI adoption is increasing 
rapidly. There has been a rapid uptake of AI applications in the workplace, enabled by the 
widespread adoption of personal computers and the Internet (Figure 1.5). Among large firms 
in Organisation for Economic Co-operation and Development (OECD) countries, AI adoption 
rates increased from slightly over 15% in 2020 to nearly 40% in 2024 (Figure 1.6). Second, 
there is a significant gap in adoption rates between small and large firms, and this gap 
appears to be widening. In 2020, adoption rates were around 12 percentage points higher in 
large firms than in small firms; by 2024, this had widened to nearly 30 percentage points. 
Third, AI adoption rates are higher in firms based in higher-income countries. For firms based 
in countries with a GDP per capita above USD 60 000 at purchasing power parity, adoption 
rates are nearly 10 percentage points higher in small firms and nearly 20 percentage points 
higher in large firms compared to the OECD average. 

Figure 1.6 ⊳ AI adoption rates by firm size in OECD countries and AI adoption 
rates by firm size compared to GDP per capita of the firm’s home 
country 

 
IEA. CC BY 4.0. 

AI adoption rates are increasing, but larger firms and firms in higher-income countries  
tend to use AI more than smaller firms and firms in lower-income countries 

Note: PPP = purchasing power parity.  

Sources: IEA analysis based on data from OECD (2024) and World Bank (2024). 
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Official surveys unfortunately provide limited information on what AI is being used for in 
firms and what barriers inhibit further adoption. One exception is a digital trends survey in 
the European Union (Figure 1.7). The survey shows that AI use by application type is quite 
broad, with language and data analysis being the most popular applications, followed by 
process automation. In terms of business function, ICT security reports the highest rate of AI 
adoption, followed by applications in core production processes. AI use for robotics, research 
and development (R&D), and logistics is non-negligible but lags behind other categories 
(likely partly due to the structure of the sample of firms, which covers all sectors including 
the dominant service sector). Chapter 3 of this report covers AI applications in the energy 
sector, while Chapter 4 focuses on AI for energy innovation. 

Figure 1.7 ⊳ Percentage of large firms reporting using AI by application type 
and business function, European Union, 2024  

 
IEA. CC BY 4.0. 

AI is used for a wide range of applications  
and across business functions 

Source: IEA analysis based on data from Eurostat (2025). 

The data also give a window into factors hindering the wider use of AI. The top constraint by 
some margin was missing expertise (the data presented here are for firms employing more 
than 250 people). Chapter 5 discusses the risk that skills gaps may hold back the broader 
adoption of AI in the energy sector. Privacy and legal concerns also rated highly as 
impediments (Figure 1.8). Chapter 3’s discussion of AI uptake in the energy sector highlights 
the potential need for adjustments in regulatory and policy regimes to facilitate the broader 
use of AI tools. The high cost of AI tools or their absence of utility to the firm did not rate 
highly as barriers to adoption. 
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Figure 1.8 ⊳ Percentage of large firms reporting not using AI by reason, 
European Union, 2024 

 
IEA. CC BY 4.0. 

Missing expertise is the dominant reason that firms do not adopt AI today, 
 followed by privacy and legal concerns 

Source: IEA analysis based on data from Eurostat (2025). 

1.3 What is AI? 

There is no single and universally accepted definition of AI. The understanding of what it 
constitutes has evolved with the development of the technology. In simple terms, AI can be 
defined as the science of making machines that are capable of learning to perform tasks that 
are traditionally considered to require human intelligence. Today, AI differs from traditional 
computational techniques that solely rely on explicitly programmed instructions. AI, by 
contrast, focuses on learning from data to find patterns, make predictions and perform 
actions. AI systems improve over time through training. 

The development of AI over the years can be structured into three archetypes: 

 Rules-based or symbolic AI: This is one of the earliest approaches to AI, which refers to 
AI systems that use explicitly programmed rules and logic to process information, make 
decisions or solve problems. This approach was rooted in the belief that intelligence 
could be captured in formal rules and symbolic logic. While both traditional computing 
and symbolic AI rely on explicitly programmed rules, symbolic AI can handle more 
complex and less well-defined tasks. This form of AI dominated research in this field for 
several decades until the 1990s. Chess engines such as DeepBlue, which defeated chess 
world champion Gary Kasparov in 1997, are examples of rules-based AI. However, rules-
based systems proved difficult to scale, brittle in the face of unexpected or open-ended 
situations and highly labour intensive to develop. 

5%

10%

15%

20%

25%

Missing
expertise

Privacy
concerns

Legal
concerns

Missing
data

Integration
challenges

High
costs

Ethical
concerns

AI not
useful



 

Chapter 1 | The rise of AI and its nexus with energy 29 

 

1 

 Machine learning and reinforcement learning: Machine learning refers to algorithms 
that learn patterns and make decisions from data without being explicitly programmed 
to do so. Instead of relying on predefined rules as in rules-based AI, machine learning 
systems build statistical models to identify patterns, predict outcomes and improve their 
performance over time through experience. Reinforcement learning refers to machine 
learning systems that learn to achieve specific objectives through trial and error. 

 Neural networks and deep learning: A neural network is a computational model 
inspired by the way the human brain works. Neural networks – a type of model under 
the machine learning umbrella – consist of layers of interconnected nodes or “neurons” 
that receive and process information. The network receives information from an 
external stimulus (e.g. an image of the number nine), processes that information by 
passing it through the nodes in each layer of the neural network, and the final layer 
provides the calculated output (e.g. recognises that the numeral in the image is the 
number nine). Deep learning refers to neural networks that have multiple “hidden” 
computational layers between the input and output layers. One of the first practical 
applications of neural networks was a numeral recognition network deployed to read 
the numbers on bank cheques in the early 1990s. 

More powerful neural networks were held back by the high computational requirements of 
training and running them, the algorithmic challenges of training multilayered networks to 
learn from data and the lack of data for training. In the 2000s, breakthroughs in training 
algorithms, improvements in computing performance and the proliferation of data led to the 
take-off of neural networks as the dominant paradigm in AI. Today’s neural networks can be 
massive, with hundreds of billions of parameters trained on trillions of data points in training 
runs that can encompass more than a trillion trillion (1024) calculations. 

Today’s AI-based systems and applications such as AI chatbots are often built on a 
combination of techniques, and there is therefore no black-and-white distinction between 
the approaches described above. 

1.3.1 Types of AI  

AI can also be classified in terms of the kinds of tasks it can perform. Although, again, there 
are overlaps among these categories, today’s AI systems can be usefully classified under the 
following commonly used terms: 

Predictive AI: Predictive AI refers to the use of AI models to predict future outcomes. It has 
applications in scientific modelling, weather forecasting, predictive maintenance of energy 
infrastructure and finance. A recent application of predictive AI that has gained prominence 
is AlphaFold, which predicts the three-dimensional structures of proteins based on their two-
dimensional sequence of amino acids. Given that the three-dimensional structures of 
proteins determine their behaviour, predicting these structures can accelerate drug 
discovery (see Chapter 4). Another example of a predictive AI model is GraphCast, which 
combines the rules of classical physics with machine learning to develop faster, cheaper and 
more accurate weather forecasts. 
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Generative AI: Generative AI refers to applications that focus on generating new content, 
such as text, images, audio and video. ChatGPT, referred to previously, is an example of a 
generative AI application, although there is a plethora of such applications in use today. Their 
popularity has brought into focus the energy needs of data centres used to train and run such 
models (see Chapter 2). While generative AI can be further categorised into numerous 
different variants, the following categories are worth noting: 

 Language models take text inputs and generate text outputs. 

 Multimodal models can also process inputs in one or more non-text forms, such as 
image, video or audio, and provide outputs in various forms (e.g. video generation). 

 Large reasoning models are variations of language models that use longer and more 
structured reasoning steps to provide more accurate answers. They perform particularly 
well on complex, multistep but well-structured problems like coding or mathematics. 
This practice of deploying longer reasoning chains to answer questions is known as 
“inference-time scaling” or “test-time scaling”. OpenAI’s o1 model and DeepSeek’s R1 
model are examples of large reasoning models. 

Computer vision: Computer vision focuses on enabling machines to interpret and 
understand visual data, such as images and videos, in a way that mimics human vision. 
Computer vision leverages AI techniques, particularly deep learning and machine learning, 
to perform tasks like object detection, facial recognition, image classification and image 
interpretation. It is widely used in applications such as self-driving cars, medical imaging, 
security and augmented reality. 

Physical AI: Physical or embodied AI refers to systems that physically interact with the real 
world, such as autonomous cars, robots and drones. Whereas classical industrial robots are 
programmed to perform only one task in a highly controlled environment, the machine 
learning capacities of modern AI systems are expanding the capability of physical AI systems 
to learn from their environment and operate in more open-ended and uncertain situations. 
In the energy sector, applications of physical AI include autonomous cars, automated drones 
to inspect energy infrastructure for faults and highly automated (self-driving) laboratories to 
test new energy technologies such as battery chemistries (see Chapter 4). 

Agentic AI: Agentic AI is a broad term encompassing autonomous “agents” designed to 
execute specific tasks, particularly in virtual environments. It helps to automate workflows 
and business processes. For example, the virtual voice assistants that are commonly seen on 
mobile devices are instances of agentic AI. In the energy sector, examples of agentic AI 
include systems that use AI to dynamically control energy consumption in buildings or the 
charging of electric vehicles. 

1.3.2 The AI supply chain 

The supply chain that ultimately leads to the application and deployment of AI is highly 
complex, geographically concentrated and yet very international. It involves several 



 

Chapter 1 | The rise of AI and its nexus with energy 31 

 

1 

components, including massive data centres that can consume as much electricity as a small 
town; critical and rare earth minerals required for the components found in these data 
centres; individual chips that can have tens or even hundreds of billions of transistors (or 
switches); and complex lithography machines costing hundreds of millions of dollars that 
etch microscopic patterns at atomic scales onto silicon chips, which in turn are made out of 
high-purity sand.  

As companies across sectors globally are beginning to deploy AI in their systems, it is 
worthwhile exploring the processes that enable the use of AI in the first place. Large-scale AI 
models trained on vast datasets are being developed by companies such as OpenAI, Meta, 
Google (Alphabet), MistralAI, NVIDIA and Baidu. While some of these companies are based 
in Europe and Asia, AI-focused technology companies based in the United States hold a 
dominant position in the market.  

The training for these models involves the use of massive datasets, substantial computing 
power, specialised hardware and dedicated systems. AI model training and use can take 
place on-device, such as on laptops and smartphones or in smart cars (known as “at the 
edge”), or remotely in data centres. Larger AI models are too complex to be trained or run 
on laptops and mobile phones and are therefore processed in data centres. These data 
centres consist of servers (which integrate the computing chips), memory drives, high-
bandwidth networks (moving huge amounts of data between chips and memory or between 
servers), cooling systems keeping the servers at optimal temperature and backup power 
systems to ensure reliability (see Chapter 2). A large share of these specialised data centres 
are based in the United States, with hubs in Northern Virginia, Texas and California, but many 
are also located in hubs such as Shanghai in China, or Paris, Dublin, London and Frankfurt in 
Europe.  

The fundamental physical building blocks of AI infrastructure are computer chips. Traditional 
computing in laptops and desktops is dominated by central processing units (CPUs). AI-
related computing has been built around graphics processing units (GPUs) and other 
specialised chips, such as tensor processing units (TPUs). GPUs, which currently dominate AI-
related computations, are designed for extremely rapid parallel processing, which results in 
much faster and more energy-efficient processing for AI training and deployment. Most GPU 
manufacturers offer specialised models with significantly increased performance for AI 
training. Dominant players that design these chips include NVIDIA, Broadcom, AMD and Intel. 
The market leaders among chip designers are also largely based in the United States. These 
chips, once designed, are manufactured either by the integrated device manufacturers that 
both design and manufacture them, such as Intel, or foundries that specialise in 
manufacturing them, such as TSMC and Samsung Foundry. Most chips used in AI-focused 
data centres are manufactured in foundries based in Chinese Taipei and Korea. TSMC 
currently holds a dominant position in the market, with a commanding 65% share of foundry 
revenue in 2024. 
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Figure 1.9 ⊳ Select AI infrastructure and types of applications 

 
IEA. CC BY 4.0. 

AI is supported by a highly complex global supply chain  

These AI-focused chips, in turn, are manufactured using highly complex machines. Advanced 
extreme ultraviolet lithography machines, such as those produced by ASML, are crucial for 
creating the intricate circuit patterns on AI-focused chips. This process involves using light to 
etch switches onto silicon wafers. ASML, headquartered in the Netherlands, is the market 
leader in manufacturing these machines. The optical systems – which are among the most 
critical of the core components of ASML’s lithography machines – are, in turn, manufactured 
by the German company Carl Zeiss. These are only a few of the key components that enable 
AI. The supply chains of various other parts of the puzzle, such as silicon wafers and data 
centre cooling systems, are also highly international. AI is therefore a global enterprise, even 
as parts of it are heavily concentrated in certain regions.  

1.3.3 Types of AI infrastructure 

Conventional data centres house general-purpose servers that support a wide range of 
applications, from cloud computing and web hosting to financial transactions. These facilities 
typically prioritise reliability, energy efficiency and low latency (i.e. the time delay between 
input and output). Because of the premium placed on low latency in traditional data centre 
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services, such as video streaming and web hosting, data centres tended to cluster close to 
final demand and population centres. This also tended to limit their size. 

Table 1.1 ⊳ Characteristics of selected types of computing infrastructure 

 
 

Traditional 
supercomputer AI training cluster AI inference cluster Cloud computing and 

web content servers  

Primary 
purpose 

Scientific discovery, 
national security 

AI model training AI model deployment 
and use 

Hosting and delivering 
web media  

Example 
use cases 

Climate modelling, 
nuclear simulations, 
oil and gas 
exploration, 
molecular modelling 

Large language model 
training 

AI chatbots and 
generative AI 
applications 

Video streaming 

Computing 
architecture  

CPU-centric, 
extremely high 
parallelism, high-
performance 
interconnect 

GPU-centric, 
extremely high 
parallelism, high-
performance 
interconnect 

Heterogeneous (mix 
of CPU/GPU/TPU/ 
ASIC), moderate 
latency 

CPU-centric, distributed 
caching, load balancing, 
edge computing 

Optimisation 
objective 

Maximise sustained 
computing across a 
highly parallel system 

Maximise aggregate 
computing and data 
throughput across a 
massively parallel 
system 

Maximise throughput 
and efficiency; 
latency tolerance 
depends on the 
application but is 
generally higher 

Minimise latency, 
maximise uptime, 
ensure scalability 

Datasets Large, often 
structured datasets 
(e.g. experimental 
data, climate models) 

Massive, often 
unstructured 
datasets (e.g. text or 
image corpora) 

High volume of 
individual requests 
(e.g. search queries 
and individual 
recommendations) 

Large-scale structured/ 
unstructured data (e.g. 
user content, media 
assets, web pages) 

Performance 
metrics 

FLOPS, sustained 
performance 

Single- and half-
precision FLOPS 

Queries per second, 
latency, performance 
per watt 

Requests per second, 
uptime, bandwidth 
utilisation, response 
time 

Resource 
requirements 

High capital 
expenditure, 
specialised facilities, 
skilled workforce 

Extremely high 
capital expenditure, 
specialised facilities, 
skilled workforce 

Moderate to high 
capital expenditure, 
depending on scale  

Scalable cloud 
infrastructure, 
distributed data 
centres, moderate to 
high capital expenditure 

Example 
systems 

Frontier (ORNL), 
Fugaku (RIKEN), 
Leonardo (CINECA) 

NVIDIA DGX 
SuperPOD, xAI 
Colossus 

Amazon Inferentia Amazon CloudFront 
Web Servers 

Note: ASIC = application-specific integrated circuit; CPU = central processing unit; FLOPS = floating-point 
operations per second; GPU = graphics processing unit; TPU = tensor processing unit.  

As AI workloads have grown more complex, specialised computing infrastructure has 
emerged to handle the unique demands of training and deploying AI models. AI training 
clusters are optimised for deep learning to process massive datasets in parallel and maintain 
high fault tolerance. AI training is less latency-sensitive than traditional data centre 
workloads, leading to the development of data centres outside existing clusters. Once 
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models are trained, they are deployed for real-world use. Different kinds of AI use cases have 
different latency tolerances. For example, in autonomous vehicles, the latency tolerance is 
close to zero because of the need for instantaneous decision making and, thus, models are 
typically run on hardware in the car itself. Conversely, queries to a generative AI model like 
ChatGPT have higher latency tolerance, allowing the data centres processing these queries 
to be more distributed.  

Table 1.1 provides an overview of four types of computing infrastructure, namely traditional 
high-performance supercomputers for scientific applications, AI training clusters, AI 
inference clusters, and cloud computing and web content servers. In addition, there are 
other categories of computing infrastructure that we do not explore further, such as 
telecommunications and 5G core network nodes, and units dedicated to processing 
blockchain and cryptography.  

1.3.4 How capable is AI and can we measure it? 

AI capabilities have been evolving rapidly. AI models and applications have been steadily 
adding new capabilities, giving users access to tools that approach or even exceed human-
level capabilities on some tasks and in some contexts. Ultimately, energy demand from AI 
will depend on, among other factors, the speed and scale of uptake, which in turn depends 
on AI’s usefulness and impact. The energy sector therefore needs to grapple with the 
capabilities of AI systems as it considers the outlook for AI adoption. This section presents a 
brief synthesis while acknowledging that the field is moving very fast.  

It is critical to note that significant caution must be applied when comparing human 
capabilities with those of AI. In its current state, AI is trained and optimised to do specific 
tasks, while human intelligence is adaptive, flexible and generalised across domains. AI 
focuses on pattern recognition and can only mimic thought and reasoning. There are also 
several challenges in defining benchmarks to test even restricted cognitive skills. For these 
reasons, any comparison between AI and humans should focus on the skills and outcomes 
related to specific tasks and take into account the difficulty of designing effective test 
benchmarks. 

AI systems were first able to approach and then exceed human capabilities in domain-
specific, highly data-intensive fields with clear rules and goals. The archetypal example of 
such a domain is games that involve strategy. One example is the game of Go, which is far 
more complex than chess – too complex for the approach taken by traditional chess engines 
based on “brute force” calculation and pre-programmed game rules. Modern AI capabilities 
were fully on display in 2016 when AlphaGo beat the Go world champion. This was a 
significant moment in the development of AI as it demonstrated the ability of mainstream AI 
techniques (reinforcement learning and neural networks) to exceed human capabilities in a 
game that involved intuition and strategy. The highest-rated Go player has a rating of 3 890, 
while AI model AlphaGo Zero has reached a rating of 5 185. These abilities to model vast but 
structured solution spaces extend to scientific domains, such as modelling the complex 
properties of materials or molecules. 
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Figure 1.10 ⊳  AI performance in selected archetypal benchmarks, 2024 

 
IEA. CC BY 4.0. 

As AI capabilities continue to evolve, some AI systems today are already  
able to perform better than the highest-scoring humans in certain tasks 

Notes: Go = the game of Go; Elo rating = a ranking system for players in games like chess and Go; GPQA = the 
Graduate-Level Google-Proof Q&A Benchmark, consisting of highly challenging multiple-choice questions in 
biology, physics and chemistry; Blocks world = a benchmark involving simple planning challenges in a 
simulated physical environment. For the Blocks world AI score, we have chosen to give the score for Mystery 
blocks world. For autonomous driving, level 4 = full autonomy in a limited set of contexts, level 5 = full 
autonomy in all contexts. 

Sources: IEA analysis based on data from EpochAI (2025a), Silver, et al. (2018), Valmeekam et al. (2023, 2024). 

In recent years, frontier AI systems have begun to approach or exceed human-level 
capabilities on tasks related to knowledge classification, summarisation and retrieval. For 
these tasks, their huge knowledge bases result in high performance (i.e. close to or above 
expert human level) across multiple academic disciplines. For example, the best AI systems 
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match human PhD level on the Graduate-Level Google-Proof Q&A (GPQA) benchmark, which 
consists of highly challenging multiple-choice questions in biology, physics and chemistry. 

AI systems are also rapidly making progress on tasks related to reasoning and planning in 
well-characterised domains with clear goals and well-structured processes, such as coding 
and mathematics. Some of the leading AI systems have begun to approach expert human-
level abilities in these areas. However, in tasks related to reasoning and planning in more 
open-ended, multistep domains, current AI systems still fall short of human capabilities and 
struggle to generalise when subjected to unexpected problems and more complex cognitive 
environments (e.g. simulated work or social environments or multistep novel plans). 

Tasks requiring meta-cognition (i.e. thinking about thinking), the generalisation of logic to 
novel situations and social intelligence are complex challenges, and AI models currently fall 
short of human capabilities. While some models are making progress, AI systems are largely 
not able to verify the correctness of their outputs or recognise when they are wrong or a 
problem is unsolvable, resulting in so-called “hallucinations” even when performing 
relatively simple tasks. They have trouble tracking and predicting the consequences of causal 
effects across multiple steps or in more complicated open-ended situations. 

Another area where AI systems currently fall short of human capabilities, but have been 
making steady progress, is interacting with the physical world. This includes understanding, 
predicting and acting in physical causal chains, particularly in novel situations. For example, 
at present, fully autonomous vehicles are only being commercially deployed in certain cities 
that have been minutely mapped in advance of deployment, as in this way, they can meet 
certain thresholds on safety. Today’s autonomous taxis achieve an autonomy level of 4 after 
learning across 20 million real-world miles, while human drivers are quickly able to achieve 
an autonomy level of 5 after around 70 hours of practice.1 Progress, however, is being made, 
with autonomous systems in vehicles and robots being able to increasingly navigate complex 
and unfamiliar terrains in demonstration projects. Part of the challenge holding back physical 
AI relates as much to hardware as software, as robot “muscles” (i.e. motors) and sensors still 
lack the precision and flexibility of human motor and sensory functions.  

Various AI benchmarks and standardised tests have attempted to gauge the accuracy, 
efficiency, speed of response and other capabilities of various models, and how they have 
evolved over time. They have focused on language understanding and reasoning, the ability 
to classify images, processing and comprehension of conversational speech, code generation 
capabilities and even advanced reasoning capabilities at the frontiers of human expertise. AI 
benchmarks, however, have limitations that necessitate a cautious approach to assessing 
their implications. First, the AI models might have been trained and optimised to perform 
well on such tests, or the benchmarks could form part of their training data (so-called data 
leakage). Second, benchmarks tend to focus on testing capabilities in specific tasks rather 
than holistic intelligence, creativity and adaptability in complex, open-ended, real-world 
settings. There are also several other constraints around safety, bias and ethical blind spots. 

 
1 For autonomous driving, level 4 = full autonomy in a limited set of contexts, level 5 = full autonomy in all 
contexts. 
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Ultimately, while AI capabilities seek to mimic human abilities, benchmark tests do not yet 
help us comprehensively measure how AI models might perform vis-à-vis a human. Yet, for 
all their limitations, benchmarks offer a window into the evolving capabilities of AI models 
that can complement data on real-world deployment. 

Figure 1.11 ⊳ Accuracy of AI models in selected benchmarks, 2018-2024  

 
IEA. CC BY 4.0. 

While AI benchmarks have several limitations and must be carefully interpreted,  
AI models have been showing improved performance on key benchmark tests over time  

Notes: The y-axis refers to the accuracy of models in the benchmark test under consideration. It does not 
compare the ability of a model vis-à-vis a human. The benchmark test measuring coding ability is HumanEval 
(Code Generation). The benchmark test measuring scientific understanding is the Graduate-Level Google-
Proof Q&A Benchmark (GPQA). The benchmark test measuring mathematics is the Mathematics Assessment 
of Textual Heuristics (MATH) Level 5. The benchmark test measuring visual understanding is Visual 
Commonsense Reasoning (VCR). 

Sources: IEA analysis based on data from EpochAI (2025a), Papers With Code (2025), and Stanford University 
(2024). 

1.4 Energy for AI and AI for energy  

In the energy sector, AI has numerous applications that can improve efficiency, reduce costs 
and drive innovation. Examples include faster, cheaper and more accurate weather 
forecasting for predicting the output of wind and solar photovoltaic plants, real-time 
monitoring and optimisation of transmission lines and the use of AI to discover new battery 
chemistries. Chapters 3 and 4 of this report explore extensively the application of AI for the 
optimisation of today’s energy system and innovation in novel energy technologies.  

At the same time, AI is also energy intensive. Globally, data centres consumed around 1.5% 
of electricity consumption in 2024. AI is only one of a range of workloads that data centres 
perform, but in anticipation of growing demand for AI-related services, investment in data 
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centres is growing rapidly (see Chapter 5) and the size of the largest data centres is 
increasing. In terms of power draw, a conventional data centre may be around 
10-25 megawatts (MW) in size. A hyperscale, AI-focused data centre can have a capacity of 
100 MW or more, consuming as much electricity annually as 100 000 households. AI-focused 
data centres are increasing in size to accommodate larger and larger models and growing 
demand for AI services. Historically, data centres have been highly concentrated in spatial 
terms, posing significant challenges to local grids given their substantial power draw. 

Figure 1.12 ⊳ Data centre annual electricity consumption in household 
electricity consumption equivalents and the spatial 
concentration of various facilities versus proximity to urban areas 

 
IEA. CC BY 4.0. 

Data centres tend to be geographically concentrated and located around cities;  
a 100 MW data centre can consume as much electricity as 100 000 households 

Notes: km = kilometre. The conventional data centre capacity considered is 25 MW. The hyperscale data 
centre capacity considered is 100 MW. The largest under-construction data centre capacity considered is 
around 2 000 MW. The largest planned data centre capacity considered is 5 000 MW. The spatial 
concentration is calculated as the inverse of the linearised Nearest Neighbour Index, which is a mathematical 
representation of how clustered or dispersed each category is, calculated via the ratio of the observed mean 
distance to the expected mean distance. 

As a result, in regions where data centres are concentrated, the share of electricity demand 
going to data centres is disproportionately high (Figure 1.12). In Ireland, for example, data 
centres consume around 20% of the metered electricity supply. There are 6 states in the 
United States where data centres already consume over 10% of the electricity supply, with 
Virginia leading at 25%. Data centres serve multiple types of workloads but expected demand 
growth from AI is driving rapid investment. The following section details the energy 
consumption pattern of AI models across their life cycle. 
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Figure 1.13 ⊳ Global map of large data centre clusters, 2024 

 
IEA. CC BY 4.0. 

Data centres are often located in large clusters,  
potentially creating challenges for local electricity systems 

Notes: GW = gigawatt. We define a data centre cluster as a group of data centres located within 100 km of 
each other. The ten largest clusters have been named. The Pearl River Delta encompasses the combined 
capacity of Guangzhou, Shenzhen and Hong Kong (China). 

Source: IEA analysis based on data from OMDIA (2025). 

1.4.1 AI model life cycle and energy consumption 

Hardware manufacturing 

The manufacturing of hardware for AI is energy intensive but along the life cycle accounts 
for less energy than the operation phase. The most energy-intensive part is the 
manufacturing of chips used in GPUs but also in server storage. For example, manufacturing 
the latest state-of-the-art 3 nanometre (nm) chip requires around 2.3 megawatt hours 
(MWh) per wafer (Garcia Bardon, et al., 2021). For a typical high-performance server 
configuration, this amounts to more than 10 MWh for manufacturing compared with more 
than 80 MWh for operation in a five-year lifetime (Figure 1.14). Of the energy needed for 
manufacturing, 60% is estimated to be for wafer and semiconductor production, where 
deposition, lithography and etching consume the majority. The remaining 40% is used for 
auxiliary processes such as water preparation or cooling in the facility.  

The energy required for manufacturing also depends on the computing power of the 
product. In particular, the higher complexity of metal layers in the latest generation of chips 
increases manufacturing electricity demand despite overall efficiency gains in the 
manufacturing process. Conversely, continued improvement in the computing power of 
chips increases the number of operations being executed by single units so that the 
embodied energy per operation decreases (Schneider, et al., 2025). 
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Figure 1.14 ⊳ Electricity intensity of wafer production by process step and 
node type and server electricity demand 

  
IEA. CC BY 4.0. 

New, more complex chip types require more energy, especially for lithography and 
deposition, but manufacturing amounts to less than 20% of the total life-cycle demand  

Notes: nm = nanometre. “Other” includes auxiliary processes, e.g. for cooling and water preparation in the 
factory. “Operation” considers a server lifetime of five years. 

Sources: IEA analysis based on Garcia Bardon, et al. (2021), Boavizta (2021), and Dell (2019).  

The production of chips is highly concentrated geographically. More than 70% is located in 
East Asia (BCG and SIA, 2021). Globally, the semiconductor industry is currently estimated to 
consume more than 100 terawatt hours (TWh) of electricity per year (Greenpeace, 2023), 
equivalent to around 1% of global industrial electricity demand. However, the impact is much 
higher in certain geographies: for example, TSMC consumed more than 20 TWh in 2023, 
which accounted for almost 10% of electricity consumption in Chinese Taipei. Most 
semiconductors are used for other purposes, but data centres and especially AI are expected 
to be the key drivers of semiconductor demand in the years to come. 

Indirect emissions from the consumption of electricity are the most significant component 
of emissions from hardware manufacturing. The high share of coal-fired electricity 
generation in many important manufacturing countries leads to a high emissions footprint 
for indirect emissions. Minor use of fossil fuels, usually around 5%, and process gases are the 
main sources of direct emissions.  

The construction of data centres and transport of intermediate materials in the supply chain 
have a minor impact on the hardware footprint. The data centre construction, including the 
materials required, accounts for less than 2% of life-cycle emissions.  
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Model training 

Model training refers to the process of the model learning from data to identify relationships 
and patterns. Given a set of inputs, the model learns to generate an output, prediction or 
action that aligns with the patterns identified in the training data and with the model’s 
overarching objectives. In the last few years, the amount of data and calculations required 
to train state-of-the-art AI models has grown exponentially. For example, estimates put the 
training data for GPT-4 at around 4.9 trillion data points, and the training compute at around 
22 trillion trillion calculations (that is, 2.2e25).  

Training is a time-consuming and energy-intensive process. Training calculations are 
performed on specialised computer chips such as GPUs. A single GPU can have a maximum 
rated power consumption of 1 000 watts in the case of the latest and most powerful chip. 
This is about as much as the power draw of a toaster. Large, state-of-the-art models are 
trained on clusters of many GPUs. For example, GPT-4 was trained on 25 000 GPUs with a 
combined rated power of around 10 MW (EpochAI, 2024). Additional power demand comes 
from information technology (IT) equipment operating alongside the GPUs in the servers 
used to train these models, such as CPUs, memory, networking equipment and switches.2 
Adding the power demand of additional IT equipment and the cooling equipment gives a 
total rated power of the equipment used to train GPT-4 of around 22 MW. This is equivalent 
to the power draw of around 150 high-power electric vehicle charging stations. 

It is estimated that GPT-4 was trained for around 14 weeks. Taking a load factor of 84% 
(Shehabi, et al., 2024), this results in a training energy demand of around 42.4 gigawatt hours 
(GWh), or around 0.43 GWh per day of training. This is equivalent to the daily electricity 
consumption of around 28 500 households in advanced economies, or 70 500 households in 
emerging market and developing economies. After training, models may undergo a process 
of fine tuning, which is much less computationally intensive than training and therefore less 
energy intensive as well. 

Energy consumption for training varies substantially depending on the model size and 
complexity and the hardware configuration. Comprehensive training data are not available 
for all significant AI models. However, we have made an estimate of the energy consumption 
of all large AI models developed since 2020 (Figure 1.15), using the following methodology: 

 We took the dataset of 283 large AI models maintained by EpochAI (EpochAI, 2025b).3 
Given that training energy consumption scales with the computational intensity of 
training, an estimate based only on large AI models is likely to cover the bulk of training 
energy consumption. 

 
2 In the documentation to its dataset, EpochAI explains its methodology for calculating the total power draw 
from model training. It multiplies the GPU power draw by 2.03 to account for non-GPU server hardware 
(networking, switches and CPUs), based on the specifications of NVIDIA DGX H100 servers, and by a further 
1.09 to account for non-IT load. See: https://epoch.ai/data/notable-ai-models-documentation#estimating-
power-draw 
3 Large AI models are defined as those with a training compute of 1023 FLOP. The number of models in the 
database is as of 24 March 2025. 
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 For models with data on maximum training power draw and estimated training duration, 
we computed the total training electricity consumption by multiplying these values by a 
load factor of 84% (Shehabi, et al., 2024). Calculated this way, the largest AI model in 
this dataset had a maximum training power draw of around 154 MW4 and a training 
electricity consumption of around 310 GWh. 

 We then used this data to fit a statistical relationship between training compute 
intensity and training electricity intensity. We used this relationship to model the 
electricity consumption of models in the EpochAI dataset for which compute intensity 
estimates are available. 

 Finally, we were left with the models in the EpochAI dataset for which neither compute 
intensity nor maximum training power draw and training duration data were available. 
For these models, we extrapolated the training electricity consumption by assuming that 
these models have the average electricity consumption of all models estimated and 
modelled under the preceding two steps. 

In the absence of better data, this gives us at least an order of magnitude for the total training 
electricity consumption of the large frontier AI models in the EpochAI dataset, which comes 
to around 1 700 GWh (1.7 TWh). This is equivalent to around 0.001% of global electricity 
consumption during this period from all sources, or 0.1% of the global electricity 
consumption of data centres during these years. 

Figure 1.15 ⊳ Estimated training-related maximum power draw, electricity 
consumption and cumulative electricity consumption for a set of 
large AI models since 2020 

 
IEA. CC BY 4.0. 

Training the largest AI model today requires a power draw of around 154 MW; cumulative 
training consumption for large AI models collectively is estimated at around 1 700 GWh 

 
4 In practice, servers never hit their maximum designed power. 
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Model use 

After training and fine tuning, the model is deployed. Each time a user queries the model – 
such as asking a question of ChatGPT – the model solves an enormous number of calculations 
to develop its answer. These calculations are performed on similar high-specification GPU-
accelerated servers as are used during the training phase. How much electricity is used during 
the query (or “inference”) phase depends on numerous factors: 

 Input query size and output answer length: longer input queries and output answers 
require more compute and therefore consume more electricity. 

 Model size: larger models require more compute to process inputs and outputs, and are 
therefore more electricity intensive, all other things being equal. 

 Input and output mode: video and image generation are generally much more compute 
intensive, and therefore electricity intensive, than text generation (Figure 1.16).  

 Implementation of algorithmic efficiencies: different strategies are being deployed to 
reduce the computational intensity of inference, for example by using mixture of experts 
(MoE) models. At inference time, MoE models selectively activate only the parts of the 
model most pertinent to solving the query in question, thereby saving on computation 
and hence energy costs while preserving model performance. 

 Degree of inference-time scaling: recently released models, such as OpenAI’s o1 model 
or DeepSeek’s R1 model, use what is known as inference-time scaling or inference 
scaling to improve performance, notably on tasks involving reasoning or planning. In 
intuitive terms, this involves the model “thinking” more intensively about its answer 
before responding. Inference scaling can dramatically increase the computational and 
energy cost of inference. 

 Hardware implementation: the specialised hardware used to run AI models has seen 
consistent improvements in energy efficiency with each generation. For example, the 
current state-of-the-art B200 GPU is 60% more energy efficient in terms of FLOP/watt 
than the previous generation’s H100, which is in turn 80% more efficient than the 
previous A100 generation (EpochAI, 2025c). Specific hardware implementation can 
substantially influence energy intensity. 

The energy consumption of different kinds of devices, machines or processes often depends 
on context. For example, factors such as tyre pressure, road surface, temperature, wind 
speed, driving speed and style, and air conditioning or heating use can have a large impact 
on the fuel economy of cars. Real-world measurements suggest that the fuel consumption 
and carbon dioxide emissions of internal combustion engine vehicles are around 20% higher 
than Worldwide Harmonised Light Vehicles Test Procedure values, and around 3.5 times 
higher for plug-in electric hybrid vehicles, largely because drivers do not charge and drive in 
full-electric mode frequently (European Commission, 2024). 

Similar caveats hold for estimates of the energy intensity of AI models, which are influenced 
by numerous factors, including model and task type, hardware set-up, and operational 
optimisations such as batch sizes, key-value cache management and attention 
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management.5 There is also a lack of transparency regarding the size and implementation of 
most user-facing commercial AI models, which makes it impossible to measure their 
compute requirements and ensuing energy demands. This lack of data makes it hard to 
estimate energy consumption for the field of AI as a whole and for users and companies to 
make informed choices when it comes to energy efficiency. Nonetheless, it is beneficial for 
policy makers and consumers of AI models to have some benchmarks to understand the 
electricity intensity of different kinds of models and tasks.  

Box 1.2 ⊳ Did DeepSeek change the outlook for AI electricity demand? 

Chinese company DeepSeek released its large reasoning model, DeepSeek-R1, on 
20 January 2025. Markets took some time to digest the news, but one week later both 
AI-related technology and energy stocks had fallen substantially. Key AI chip designer 
companies were down 20% a week later, while the leading chip manufacturing 
equipment provider was down 6%. Meanwhile, the stocks of key energy companies fell 
by around 20% in the same period as a result of the uncertainty triggered by DeepSeek. 
Many actors in the market asked whether the apparent efficiencies achieved by 
DeepSeek changed the outlook for AI-related electricity demand.  

DeepSeek uses a sophisticated MoE approach (see above), which reduces the activated 
model size by 95% while preserving performance. This is equivalent to the model having 
a large knowledge base but efficiently accessing only a small part of it to answer a given 
question. It also uses an innovative approach to process much more efficiently the 
contextual relationships between the different elements of the input question, focusing 
only on the most important words of the question and paying less attention to the rest.6 
Finally, DeepSeek calculates output words in parallel, not sequentially.7 Given the input 
“the cat sat”, DeepSeek would calculate the output, “on the mat”, as a single 
computational step, rather than “on”, “the”, “mat” sequentially. 

These innovations drive down the computational, financial and energy cost of training 
and use. However, several countervailing factors also need to be considered. First, lower 
costs may incentivise greater use. Second, despite the computational efficiencies 
achieved, reasoning models such DeepSeek-R1 and OpenAI’s o1 model are substantially 
more energy intensive than other large language models. This is because reasoning 
models “think” more intensively while developing their answers (known as “inference-
time scaling”). While this can result in better answers on reasoning or planning problems, 
it is far more energy intensive than traditional large language models and extremely 
inefficient for knowledge retrieval or summarisation problems. 

 
5 Batching refers to maximising the parallel processing power of GPUs by grouping tasks and running them 
together rather than sequentially; it is analogous to running a dishwasher fully loaded. Key-value cache 
management refers to techniques that optimise the efficient use of GPU memory, because reading and writing 
data into memory is energy intensive. Attention management techniques include flash attention, which breaks 
input data into separate, more efficient chunks for processing. 
6 This approach is called multi-head latent attention (MLA). 
7 This is known as multi-token prediction (MTP). 
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This discussion highlights three themes that run through this report. First, substantial 
progress has been made in making models more efficient, and this is certain to continue: 
efficiency is both a software and a hardware issue. Second, cheaper, more efficient 
models are likely not only to incentivise greater use but also more compute use to 
improve performance, i.e. the rebound effect. Third, incentivising the efficient use of 
models (i.e. the right model for the right task) will have a large impact on the energy 
pathway of AI. This is likely to depend on the price and information environment that 
users face, on the business models developed to amortise model training and 
deployment, and on the regulatory and policy environment. 

We therefore conducted an assessment of the energy intensity of different open-source 
models across a variety of generative AI tasks.8 Initially, we present the results for isolated 
tests taking into account only the GPU energy costs, as the GPU is the most energy-intense 
part of the computation. Tests were performed on H100 GPUs. The results presented in 
Figure 1.16 and Figure 1.17 should be seen as highly controlled experimental results – real-
world implementations are likely to differ. Further down in Figure 1.18, we present the 
effects of operational optimisations that are implemented in the real world, such as batching. 

Figure 1.16 ⊳ Indicative inference electricity consumption for selected 
generative AI tasks in experimental conditions and the electricity 
consumption of charging consumer electronics  

 
IEA. CC BY 4.0. 

The electricity intensity of different generative AI tasks varies greatly –  
generating a single short video can be as energy intensive as charging a laptop two times 

Notes: Text generation, low = Yi-1.5 9B model with 9 billion parameters. Text generation, high = Llama 3.3 with 
70 billion parameters. Image generation = SD-XL 1.0-base model. Video generation = CogVideoX-5b. For video 
generation, the videos are 6 seconds long and 8 frames per second. Only the GPU electricity consumption is 
shown in the figure as this is the metric for which the measurement is the most reliable.  

 
8  We are thankful to Dr Sasha Luccioni for her collaboration on this analysis. All errors, omissions and 
conclusions drawn from this analysis are those of the IEA alone.  
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Figure 1.16 shows the GPU energy consumption of different model tasks under test 
conditions. Text generation using a small language model takes around 0.3 Wh. Using a 
medium-sized language model consumes around 5 Wh. Image generation takes around 
1.7 Wh per task. Video generation, however, is two orders of magnitude more energy 
intensive, taking around 115 Wh to generate a short, relatively low-quality video (6 seconds 
in length, at 8 frames per second). To put these numbers into perspective, charging a mobile 
phone or laptop requires around 15 Wh and 60 Wh, respectively. 

Figure 1.17 ⊳ Indicative inference electricity consumption across different 
model types for text generation tasks in experimental conditions 

 
IEA. CC BY 4.0. 

Model design and model choice have large impacts on electricity intensity  

Notes: LM = language model; MoE = mixture of experts. Very small LM = SmolLM2-1.7B-Instruct. Small LM = 
Yi-1.5. Medium-sized LM = Llama 3.3 with 70 billion parameters. Large MOE = Mixtral-8x 22B. Large reasoning 
model = DeepSeek-R1. Only the GPU electricity consumption is shown in this graph as this is the metric for 
which measurement is the most reliable. The large reasoning model electricity consumption was estimated 
based on the relationship in electricity consumption observed between DeepSeek and a language model of 
the same size for a specific sample of prompts (O'Donnell, 2025). 

However, it is also important to note that AI models come in many different sizes and set-
ups. Larger models tend to perform better in terms of accuracy and quality. However, they 
also consume much more energy. To explore the importance of model size and set-up for 
energy consumption, we performed the same text generation task on several different 
language models. The very small language model tested had 1.7 billion parameters and 
consumed 0.1 Wh for the task. The medium-sized language model tested had around 
40 times more parameters and used more than 40 times more electricity to perform the task 
(around 4 Wh). The MoE model tested had two-and-a-half times more parameters than the 
medium-sized language model but consumed only around 45% more electricity on the task. 
We also estimated a large reasoning model (DeepSeek-R1, see Box 1.2). As noted above, 
reasoning models “think” more when developing their responses, using inference-time 
scaling to give better answers on reasoning-intensive problems like maths and coding. 
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However, using a reasoning model on a simple text generation task uses twice as much 
electricity as a model of a comparable size (Figure 1.17). While these tests isolate the issue 
of model performance, they clearly highlight that model design and choice have large 
impacts on electricity intensity. 

In the real world, inferences are often processed through batching. This means grouping 
different independent inputs together and processing them in parallel. By handling multiple 
inputs simultaneously, batching allows for more efficient utilisation of GPU computing 
capabilities that would otherwise be underutilised, thereby increasing per-token energy 
consumption. 

Figure 1.18 ⊳ Impact of batching on electricity consumption per task for 
inference across various generative AI models 

 
IEA. CC BY 4.0. 

Efficiency measures for inferencing such as batching  
halve the electricity consumption per task 

Notes: LM = language model; MoE = mixture of experts; e = estimated. Only the GPU electricity consumption 
is shown in this graph as this is the metric for which measurement is the most reliable. Efficiency gains are 
estimated based on the relationship observed between batch size, number of parameters of the model and 
normalised GPU electricity consumption per token (Argerich and Patiño-Martinez, 2024).  

Figure 1.18 shows estimates of the efficiency gains achievable through batching. It is worth 
mentioning that such gains have diminishing returns with increasing batch size. Batching is 
also constrained by the memory capacity of the hardware, making large batch sizes 
impractical for very large models or for hardware with a smaller memory size. 
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Box 1.3 ⊳ A bag of heuristics to go from tasks to TWh 

Humans use heuristics (rules-of-thumb) as important tools in our reasoning processes. 
There is some evidence that AI models do too. Heuristics can be useful, but care needs 
to be taken to ensure that they are not overly simplified and are applied in the right 
situation. Here we use heuristics to understand the relationship between electricity 
demand from data centres and their potential output.  

Looking ahead, electricity demand from data centres, driven in particular by AI, is 
projected to grow by several hundred TWh (see Chapter 2). This box tries to answer the 
question: how much inference demand for generative AI would it take to consume 
100 TWh of electricity? For reference, in 2023, the largest four hyperscalers (Google, 
Amazon, Meta and Microsoft) had a combined data centre electricity consumption in the 
order of 90 TWh.  

 A large language model, with optimised implementation, could generate more than 
4 250 trillion words of output with 100 TWh of input. For comparison, this is 
equivalent to around 110 million copies of the Encyclopaedia Britannica. 

 An image generation model could generate around 55 trillion images with around 
100 TWh of input. 

 A video generation model could generate in the order of 950 million hours of videos 
with 100 TWh of input. To put this in perspective, Netflix viewers streamed around 
94 billion hours of content in the second half of 2024.  

These numbers provide rough orders of magnitude of the scale of generative AI outputs 
that could be produced with 100 TWh of electricity input. They highlight that this scale 
of generative-AI driven electricity demand is plausible once multimodal outputs are 
stacked together (text, image, video). These estimates should be seen as rough 
approximations, because real-world model implementations may be more efficient than 
the experimental conditions that were used for this report. On the other hand, 
commercial models also tend to be more powerful and therefore possibly more energy 
intensive than the open-source models we tested in this report. 
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Chapter 2 

Energy for AI 
The evolution of energy demand and how to meet it 

 

• Artificial intelligence (AI) model training and deployment occur mainly in data centres. 
In total, electricity consumption from data centres is estimated to amount to around 
415 terawatt hours (TWh), or about 1.5% of global electricity consumption in 2024. It 
has grown at 12% per year over the last five years. 

• Our Base Case projections for data centre electricity consumption are grounded in the 
latest industry expectations for server shipments. Three sensitivity cases (Lift-Off, 
High Efficiency and Headwinds) capture uncertainties in efficiency improvements in 
hardware and software, AI uptake and energy sector bottlenecks. 

• In the Base Case, electricity consumption from data centres rises to around 945 TWh 
by 2030, more than doubling from the 2024 level. The United States sees by far the 
largest absolute growth, followed by China and Europe. Data centres still account for 
less than 10% of the growth in global electricity consumption to 2030. 

• The Lift-Off Case assumes stronger AI uptake and limited local constraints on data 
centre buildout. In this case, consumption reaches over 1 260 TWh by 2030. The High 
Efficiency Case is driven by energy savings in both software and hardware; 
consumption reaches around 800 TWh by 2030. In the Headwinds Case, it reaches 
around 670 TWh. By 2035, the spread of uncertainty widens further, spanning 
700 TWh to 1 720 TWh across the four cases.  

• Natural gas generation to meet data centre demand increases by around 175 TWh 
from today’s level to 2035 in the Base Case, mostly concentrated in the United States. 
In the Lift-Off Case, it grows by 290 TWh. Renewables provide the largest contribution 
to meet data centre demand, increasing by 450 TWh to 2035 in the Base Case. This 
reflects their broad availability, short development times, economic competitiveness 
and technology sector procurement strategies. Nuclear power also contributes. 

• Grid congestion and connection queues are growing in many regions, and supply 
chains for key components like transformers and gas turbines are stretched. In our 
analysis and modelling of these factors, we estimate that around 20% of the projected 
data centre additions by 2030 in our Base Case could be at risk of delay.  

• Avoiding this risk will require a range of actions from both the energy and technology 
sectors. Permitting times for new projects need to be cut. Grid operators should 
streamline the confusing tangle of data centre connection applications. The 
technology sector should maximise the buildout of data centres in areas of high power 
and grid availability and explore strategies to incentivise their operational flexibility. 
Better management of the growing data centre load could be facilitated by better 
data on both grid constraints and the data centre demand outlook.  

S U M M A R Y  
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2.1 Introduction 
Investment in new data centres has surged, increasing by nearly 70% in the last two years at 
the global level. One of the main drivers of this investment has been the rise of artificial 
intelligence (AI), alongside the deepening digitalisation of the global economy. The rapid 
increase in data centre investment is raising concerns about the ability of electricity systems 
to meet growing demand in a timely, secure and sustainable way.  

Data centres – at least at the scale seen today – are relatively new actors in the energy system 
at the global level, and data collection and reporting on their electricity consumption remain 
limited. There is therefore substantial uncertainty about both their current and future 
consumption. Moreover, AI models are highly heterogeneous, and data on their uptake and 
electricity intensity are limited (see Chapter 1). As a result, it is challenging to analyse the link 
between AI demand and data centre electricity consumption. 

On the electricity supply side of the equation, the sector is facing several challenges. 
Electricity demand is already growing strongly in emerging market and developing 
economies, driven especially by economic growth, industrialisation, increased adoption of 
appliances, and surging needs for cooling. Advanced economies are also returning to growth 
in electricity demand after two decades of stagnation. However, the electricity sector faces 
several bottlenecks, including permitting times and tangled supply chains. 

This chapter explores these issues across the following sections: 

 Section 2.2 sets the scene by describing the determinants of data centre electricity 
consumption and how much electricity data centres consume today. 

 Section 2.3 presents new International Energy Agency (IEA) modelling on the outlook 
for electricity demand from data centres. 

 Section 2.4 places data centres within the broader context of the information and 
communication technology (ICT) sector and discusses how the uptake of AI may 
influence the energy consumption of the ICT sector beyond data centres. 

 Section 2.5 examines electricity supply scenarios to meet the demand growth from data 
centres. 

 Section 2.6 discusses how data centres interact with grids and what can be done to avert 
the risk of project delays due to electricity sector constraints. 

2.1.1 Case design 

The uncertainty surrounding future data centre electricity demand requires a scenario-based 
approach to explore alternative pathways and provide perspectives on timelines relevant to 
energy sector decision making. While the technology sector moves quickly and a data centre 
can be operational in two to three years, the broader energy system requires longer lead 
times to schedule and build infrastructure, which often requires extensive planning, long 
build times and high upfront investment. At the same time, information on the project 
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pipeline for new data centres extends only a few years into the future. Industry forecasts for 
key variables – such as chip and server production and shipments – are likewise short term 
(three to five years), reflecting the rapid pace of innovation and inherent uncertainties 
surrounding key drivers of data centre demand, notably AI uptake. 

For these reasons, we present our cases across two timeframes. Section 2.3.1 focuses on 
projections to 2030 and the results of our Base Case (see below). Section 2.3.2 takes a slightly 
longer-term, exploratory approach, presenting results to 2035 and for a wider range of cases. 
The underlying assumptions of these four cases are briefly described as follows, with more 
details provided in sections 2.3.1 and 2.3.2: 

 The Base Case explores the trajectory of electricity consumption in data centres under 
current regulatory conditions and industry projections. The key driver in this case in the 
near term is industry projections for server shipments to 2028 and a continuation of this 
trend after 2028. Efficiency improvements are expected to continue playing a pivotal 
role in limiting strong growth in energy consumption, despite increasing demand for 
digital services. 

 The Lift-Off Case assumes stronger growth in AI adoption than in the Base Case. A more 
resilient supply chain and greater flexibility in data centre location, powering and 
operations enable faster data centre deployment. 

 The High Efficiency Case shares similar constraints and drivers with the Base Case but 
assumes stronger progress on energy efficiency in software, hardware and 
infrastructure. As a result, the same level of demand for digital services and AI is met 
with a reduced electricity consumption footprint. 

 The Headwinds Case captures the impact of a downside in the outlook for data centre 
deployment, particularly due to slower than expected AI adoption. The emergence of 
local bottlenecks, along with a tight supply chain, causes delays in capacity expansion 
compared to the most ambitious industry projections. 

Given the novelty and technical specificity of data centres as actors in the energy system, the 
next section presents a brief set of definitions to help readers navigate the rest of the 
chapter. Readers more familiar with the sector may wish to skip this section and move 
directly to section 2.2.1, where we present the historical trends in data centre electricity 
consumption. 

2.1.2 Key definitions and concepts 

There are several types of data centres. In this report, we use the following categorisations: 

 Enterprise data centres are run by businesses or institutions for their own use. They are 
typically smaller and less efficient than other types of data centres and represent around 
28% of data centre capacity today. Their share has been steadily decreasing over time, 
from 85% in 2005.  
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 Colocation and service provider data centres lease space to customers to house their 
own computing and storage equipment (colocation) or provide both the space and 
computing equipment (service providers). Both types of data centres can accommodate 
hundreds or thousands of customers; an estimated 36% of capacity falls into this 
category today. 

 Hyperscale data centres are massive facilities operated by major technology companies, 
such as Amazon Web Services, Google, Meta and Microsoft. They use scalable, highly 
efficient infrastructure to support cloud services, web hosting and, increasingly, AI 
services. Their role has grown quickly from around 10% of data centre capacity in 2010 
to 37% today. 

Figure 2.1 ⊳ Data centre components 

 
IEA. CC BY 4.0. 

Effective design and integration of key data centre components  
ensure continuous operation and optimal performance 

Data centres are facilities used to house servers, storage systems, networking equipment 
and associated components that are typically installed in racks and organised into rows 
(Figure 2.1). This information technology (IT) equipment, and the range of auxiliary 
equipment required to keep it in working order, comprises the following: 

 Servers are computers that process and store data. They can be equipped with central 
processing units (CPUs) and specialised accelerators, such as graphics processing units 
(GPUs). On average they account for around 60% of electricity demand in modern data 
centres, although this varies greatly between data centre types (Figure 2.2).  

 Storage systems are devices used for centralised data storage and backup and account 
for around 5% of electricity consumption. 
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 Networking equipment includes switches to connect devices within the data centre, 
routers to direct traffic and load balancers to optimise performance. Networking 
equipment accounts for up to 5% of electricity demand. 

 Cooling and environmental controls consist of equipment that regulates temperature 
and humidity to keep IT equipment operating at optimal conditions. The share of cooling 
systems in total data centre consumption varies from about 7% for efficient hyperscale 
data centres to over 30% for less-efficient enterprise data centres.  

 Uninterruptible power supply batteries and backup power generators keep the data 
centre powered during outages. These are rarely used but are necessary to ensure the 
extremely high levels of reliability that data centres must meet. 

 Other infrastructure includes lighting and office equipment for onsite staff, etc.  

The share of these different components in data centre electricity consumption varies greatly 
by data centre type, depending on the nature and efficiency of the equipment installed. 
Figure 2.2 presents the typical breakdown for different data centre types in operation today.  

Figure 2.2 ⊳ Share of electricity consumption by data centre and equipment 
type, 2024 

 
IEA. CC BY 4.0. 

Hyperscale data centres are the most efficient,  
with the bulk of electricity going to servers and other IT equipment 

Several technical characteristics determine data centre electricity consumption:  

 Installed IT capacity refers to the operating servers, storage and networking devices and 
is measured in megawatts (MW). Total installed capacity includes both IT capacity and 
the power capacity of auxiliary equipment. In many cases, data centres are only partially 
filled with servers. Maximum designed capacity refers to the maximum capacity of a 
data centre if it is filled with servers; in many instances, it is smaller than the total 
installed capacity. 
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 The utilisation rate of IT equipment measures how much of the available computing 
resources are actively being used over a given period. Smaller and less-efficient 
enterprise data centres have average utilisation rates below 20%, while hyperscale data 
centres with optimised loads can have average utilisation rates of up to 50%. 

 Idle power is the amount of electricity a device consumes to perform essential 
background operations when not actively processing workloads. It is typically expressed 
as a percentage of maximum rated power. A lower idle power is more efficient. Idle 
power has improved from around 60% in 2010 to around 35% of rated power in modern 
servers. 

 Power usage effectiveness (PUE) is the ratio of total facility electricity consumption to 
the electricity consumption of the IT equipment (PUE = total consumption/IT 
consumption). It is commonly used as an important indicator of the energy efficiency of 
a data centre, with a focus on minimising infrastructure electricity consumption (such 
as cooling and lighting) compared to the electricity consumption of IT equipment. This 
measure can vary widely from around 2 (meaning 1 kilowatt hour [kWh] of electricity 
used for cooling and auxiliary equipment for every 1 kWh of electricity used by IT 
equipment) for enterprise data centres to just under 1.15 for hyperscale data centres 
(0.15 kWh used for cooling and auxiliary equipment for every 1 kWh used by IT 
equipment). 

Data centre servers deploy several kinds of chips and server architectures: 

 Central processing units (CPUs) are the primary components of a computer that carry 
out instructions from programs by performing operations. 

 Graphics processing units (GPUs) and other “accelerators”, such as tensor processing 
units, are optimised for parallel computations, enabling faster processing of certain 
tasks. 

 Accelerated servers are specialised servers equipped with GPUs or similar accelerator 
chips to enhance computing performance for specific tasks. They are particularly 
important for AI training and deployment. 

2.2 Electricity consumption of data centres 

2.2.1 Historical electricity consumption of data centres 

A sharp acceleration in recent years 

The Internet revolution took off in the 1990s, and early growth in the demand for digital 
services was strong. The electricity consumption of data centres in the United States almost 
doubled between 2000 and 2005, raising concerns about runaway growth (Koomey, 2007). 
An inflection point occurred around 2007-2008, when slowing growth in data centre 
electricity consumption indicated a decoupling from the still-booming demand for digital 
services. Several factors contributed to this slowdown in global data centre electricity 
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consumption, including the migration of service demand to more efficient, larger data 
centres (colocation, service provider and hyperscale), but also continued improvements in 
hardware efficiency and operating efficiency (declining idle power ratios, for example).   

Figure 2.3 ⊳ Total data centre electricity consumption by equipment type 
and data centre type, 2005-2024 

 
IEA. CC BY 4.0. 

After a decade of limited growth, data centre electricity  
consumption began to accelerate again after 2015 

Note: GW = gigawatt; TWh = terawatt hour.  

Sources: IEA analysis based on data from IDC (2024a), OMDIA (2025), and SemiAnalysis (2025). 

However, a sharp acceleration in data centre electricity consumption took place from around 
2017 onwards. Important drivers of this step change were the growth of cloud computing, 
the shift to online media consumption, the wider use of social media platforms and the rise 
of AI, which increased the demand for high-performance computing, facilitated by the rise 
of accelerated servers. Between 2015 and 2024, the capacity of accelerated servers grew 
four times faster than the total capacity of servers. While accelerated servers are much more 
efficient on a per-task basis, they also unlocked many new tasks, that were not possible on 
conventional servers. These new capabilities, among other factors, drove an increase in 
service demand that outstripped the pace of continued efficiency improvements.  

Figure 2.4 provides another view of the drivers of electricity consumption by data centres 
from 2005 to 2015 and then from 2015 to 2023. From 2005 to 2015, global Internet Protocol 
(IP) traffic, mobile broadband subscriptions and active social media accounts grew by more 
than 25% per year. These are proxies for the rapid initial growth in demand for digital 
services. Growth rates moderated in the period from 2015 to 2023. In contrast, the growth 
rate of the total stock of servers in data centres accelerated from an annual growth rate of 
4% seen in the period 2005 to 2015 to 8% per year from 2015 to 2023. Several key indicators 
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of efficiency saw faster improvements from 2005 to 2015, including the rate of the shift from 
less-efficient enterprise data centres to more-efficient hyperscale, colocation and service 
provider data centres. As a result of these trends, data centre electricity consumption growth 
accelerated from 3% annually from 2005 to 2015 to 10% annually from 2015 to 2024. 

Figure 2.4 ⊳ Average annual change in key drivers of data centre electricity 
consumption globally, 2005-2015 and 2015-2023 

 
IEA. CC BY 4.0. 

Robust service demand growth, an acceleration in the total number of servers and a 
slowdown in some efficiency indicators led to faster electricity consumption growth 

* Data starts in 2007. ** Data ends in 2022, estimated for 2022.  

Sources: IEA analysis based on data from Cisco (2008), Cisco (2015), Cisco (2019), ITU (2025), Meltwater 
(2024), SPEC (2024), and World Bank (2024a). 

Box 2.1 ⊳ What share of data centre electricity demand comes from AI? 

How much electricity demand comes from AI specifically is a challenging question to 
answer. AI is only one of the workloads that run on data centres, and as AI becomes 
increasingly pervasive, a clear distinction between AI-related and non-AI-related 
workloads becomes more challenging. There is no comprehensive data on the share of 
different kinds of workloads, and service providers or colocation data centre operators 
often have limited visibility over the specific workloads running in their facilities. 
Moreover, there are often differences in the definition of AI, with some traditional AI 
sometimes being excluded. In this context, the range of estimates for the share of AI in 
total data centre electricity consumption is very wide (Figure 2.5). 

As a second-best approach, estimates often rely on the electricity consumption of 
accelerated servers as a proxy for the share of AI in total electricity consumption from 
data centres. Accelerated servers accounted for 24% of server electricity demand and 
15% of total data centre demand in 2024.  
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Figure 2.5 ⊳ Estimated data centre electricity demand due to AI, 2020-2030 

 
IEA. CC BY 4.0. 

Estimates of the share of AI in total data centre electricity consumption  
vary widely and are based at best on imperfect proxies  

Sources: IEA analysis based on data from Deloitte (2024), Gartner (2024), Goldman Sachs (2024), 
Schneider Electric (2024), SemiAnalysis (2024), and Shehabi, et al., (2024). 

However, this is an imperfect proxy for total AI electricity consumption. AI workloads, 
especially training, are often run on this type of specialised hardware, but some AI 
inferencing tasks also run on conventional servers, and some non-AI related tasks, such 
as high-performance scientific computing, are run on accelerated servers. Looking ahead, 
some AI inferencing workloads could move from data centres to end-user devices such 
as mobile phones and laptops (see section 2.4), further increasing uncertainty about 
AI-related electricity demand.  

Data centre electricity consumption is not spread evenly around the world  

The United States, Europe and China account for around 85% of global electricity 
consumption from data centres today. In the United States, electricity consumption from 
data centres grew by around 12% a year between 2015 and 2024. Data centres accounted 
for around 180 TWh of electricity consumption in 2024 in the United States, nearly 45% of 
the global total and more than 4% of US electricity consumption from all sources (Figure 2.6).  

In China, the data centre sector started to expand significantly from 2015 onwards, with 
electricity demand growing 15% per year between 2015 and 2024, more than twice the rate 
seen between 2005 and 2015. Over the same period, electricity consumption across all 
sectors grew at an annual rate of around 7%. As of today, data centres account for 
approximately 100 TWh of electricity consumption, roughly equivalent to that of electric 
vehicles in China. The country accounts for around 25% of global data centre electricity 
consumption, up from less than 20% a decade ago. However, substantial data gaps make it 
challenging to accurately estimate China’s data centre electricity consumption (IEA, 2025). 
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Figure 2.6 ⊳ Electricity consumption of data centres by region, 2005-2024 

 
IEA. CC BY 4.0. 

The acceleration in data centre electricity consumption observed in 2017  
was mainly driven by the United States and, to a lesser extent, by China 

Data centres account for slightly less than 2% of Europe’s electricity consumption, a share 
that is higher than China’s (1.1%). However, in absolute terms, Europe’s consumption is 
lower, at an estimated 70 TWh in 2024. Europe’s share of the global electricity consumption 
of data centres has decreased over the past decade but still represents slightly above 15%. 
In Japan, we estimate that data centres account for less than 20 TWh of electricity 
consumption (about 2% of Japan’s total consumption, on a par with Europe). We estimate 
that data centres account for around 9 TWh of consumption in India (Box 2.2), or about 0.5% 
of total consumption. However, the sector appears poised for rapid growth. 

Box 2.2 ⊳ Country focus: India 

India has a thriving ICT sector, with the value of IT exports steadily growing to over 
USD 200 billion in 2024. By comparison, the world’s largest oil exporter earned 
USD 220 billion on export revenues that year. India is also home to around 950 million 
Internet users. Spurred by data localisation requirements in some sectors, India is now 
emerging as a rapidly growing data centre market. As of June 2024 India had 2 GW of 
total installed data centre capacity in operation, together consuming electricity 
equivalent to 6.5 million Indian households. India’s total installed data centre capacity 
has doubled in only four years, and over 2 GW of further maximum designed capacity is 
in the pipeline and planned to come online over the next two years. This means that total 
installed capacity is on track to reach nearly 5 GW by 2030 (Figure 2.7).  

The government’s IndiaAI Mission, with a budget of USD 1.2 billion, consists of several 
objectives, including the development of an AI computing ecosystem with over 
18 000 GPUs to support AI start-ups and research. In addition, there are incentives from 
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state governments for data centres; for instance, Uttar Pradesh announced a 100% 
exemption on electricity duty and transmission charges for ten years for new data 
centres. 

Electricity consumption from data centres is contributing to India’s electricity demand 
growth at a time when India is already among the world’s fastest-growing electricity 
markets. Coal fuels 74% of electricity generation in India today, providing much of the 
firm power to the grid, and the dominance of coal in the mix is likely to continue beyond 
2030. However, since India’s “open access” rules enable the direct purchase of power 
from generators, several technology companies are signing power purchase agreements 
(PPAs) directly with renewable energy generation companies to reduce their emissions. 
For example, the data centre subsidiary of Indian telecommunications major Bharti Airtel 
announced it would procure 140 GWh of renewable energy annually and has been 
working with generation companies to set up captive solar photovoltaic (PV) and wind 
capacity for their data centres.  

To ensure that the upcoming wave of new data centre construction remains on target, 
India will need to address long-standing issues of grid reliability to capitalise on data 
centre and AI growth. In the current context, backup and captive power generation for 
data centres remains a critical consideration owing to the risk of power supply 
interruptions from the grid. Grid infrastructure creation and upgrades will also need to 
keep track of new data centre construction. Data centres are proving to be important 
energy consumers in India, creating additional demand for power generation, notably 
from solar PV and wind, and driving investment in power backup options (including 
battery storage) and transmission infrastructure upgrades. 

Figure 2.7 ⊳ India’s total data centre capacity and electricity generation 
mix, 2020-2030 

 
IEA. CC BY 4.0. 

Data centre total installed capacity in India is set to double by 2030; while coal 
dominates the electricity mix in India, the share of renewables increases to 35% by then 
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Data centre electricity consumption from a broader perspective  

With the rapid growth seen in recent years, the data centre sector accounted for around 4% 
of global growth in electricity consumption between 2014 and 2024. However, other drivers, 
such as growing appliance adoption in buildings and industrial electrification, were more 
significant. Data centres accounted for around 250 TWh of incremental electricity 
consumption in this period, roughly equivalent to the electricity demand of Spain. In 
comparison, the electricity consumption of space cooling grew by around 700 TWh 
(Figure 2.8). 

Figure 2.8 ⊳ Increase in electricity demand by sector in the Base Case,  
2014-2024 

 
IEA. CC BY 4.0. 

Over the past decade, growth in electricity demand for data centres  
increased by almost as much as for transport 

All historical data are estimates, not measurements 

Currently, very few governments mandate reporting and publication of comprehensive 
statistics on data centre electricity consumption (see Chapter 5). As a result, all data on the 
historical consumption of data centres at the global level are the result of estimates based 
on a variety of sources. These sources come with different challenges and gaps; combined 
with the lack of common definitions (Masanet, Lei and Koomey, 2024), this results in widely 
divergent estimates, even for historical consumption. 

Often, companies and institutions that track or report on data centre capacity, including real 
estate companies, consulting companies and data centre operators, do not use a consistent 
scope or definitions. A key distinction is between the maximum designed capacity and the 
actual installed IT capacity. Data centres are often not filled to their maximum designed 
capacity, and IT capacity is usually ramped up progressively in new data centres. Access to 
detailed data on the installed capacity of data centres requires subscriptions to expensive 
third-party data services, an option that is often not available to many actors. 
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Several recent studies rely on outdated or overly simplistic PUE assumptions due to a lack of 
high-quality, publicly available data for different data centre types and regions. The load 
factor of data centres is also marked by uncertainty. This metric is determined by IT 
equipment utilisation rates and idle server power consumption, both of which vary greatly 
across different workloads and hardware configurations. Combined with a lack of available 
data, this complicates aggregate load factor estimations, leading to significant discrepancies 
in consumption estimates. 

The rapid adoption of GPUs and other accelerated server designs further compounds these 
challenges. There are limited available data on annual shipments and the installed stock of 
accelerated servers. This has a large impact on demand estimations, as accelerated servers 
are much more power intensive than conventional servers. Finally, companies operating in 
the sector, including hyperscale and colocation providers, largely do not report their data 
centre electricity consumption specifically. 

As a consequence, all historical data regarding global data centre electricity consumption are 
modelled estimates, not measured data, and the range of estimates is wide (Figure 2.9). 
Triangulating multiple data sources does lead to broadly converging estimates that align with 
the IEA estimates provided in this chapter (Kamiya and Coroamă, 2025a). However, the 
process is intensive in time, resources and expertise. The data and methodological annex to 
this report provides more details on the methodology used by the IEA to estimate data centre 
electricity consumption from data centres. 

Figure 2.9 ⊳ Comparison of three approaches to estimating global data 
centre electricity consumption, 2023 

 
IEA. CC BY 4.0. 

Different modelling approaches can lead to a wide range of estimates 

Source: IEA analysis based on data from Kamiya and Coroamă (2025a). 
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2.3 Outlook for electricity consumption from data centres 
Our modelling approach relies on a bottom-up methodology developed by Lawrence 
Berkeley National Laboratory, using IT equipment shipments as a key driver of data centre 
energy demand (Shehabi, et al., 2024). The rise of AI is accelerating the deployment of high-
performance accelerated servers, leading to greater power density in data centres. 
Understanding the pace and scale of accelerator adoption is critical, as it will be a key 
determinant of future electricity demand. The key input to our modelling is therefore near-
term industry projections for server shipments, considering the outlook for demand and 
supply constraints (IDC, 2024a). Readers interested in more methodological details can find 
these in the data and methodological annex to this report. 

2.3.1 Outlook in the Base Case 

Key drivers 

In the Base Case, AI adoption alongside continuously deepening digitalisation drives the 
expansion of the data centre sector. The key drivers of electricity consumption from data 
centres evolve as follows in the Base Case:  

 The total stock of servers is projected to increase by more than 60% by 2030, with 
around a third of this increase due to the extended lifetime of servers. The total stock 
of accelerated servers increases even more strongly, but the share of accelerated 
servers in the total stock of servers remains below 10%.  

 The total installed capacity of data centres, which includes all installed IT equipment, 
cooling systems and auxiliary equipment, increases by more than the increase in the 
stock of servers, because the power intensity of servers (watts/server) increases 
substantially. This is due to the increase in the size and number of accelerated servers. 
A key driver of the increase in the average wattage of accelerated servers is the rising 
number of accelerators per server, with servers containing eight accelerators 
representing a significant share of the stock of accelerated servers by the end of the 
decade. The rated power of such servers can cross the 10 kilowatt (kW) mark; in 
comparison, the rated power of servers with two accelerators is below 2 kW. In the Base 
Case, the total installed capacity of data centres more than doubles from around 
100 GW today to around 225 GW in 2030. The total capacity of accelerated servers 
grows by almost five times, compared to an increase of 1.8 times for conventional 
servers. 

 Cooling efficiency continues to improve in the Base Case. This is driven primarily by 
advancements in cooling technologies and data centre operational management, rather 
than a strong shift from enterprise data centres to more efficient colocation or 
hyperscale facilities. In the Base Case, the share of server capacity hosted by enterprise 
data centres slowly declines below 20% from 2024 to 2030. The global weighted average 
PUE is projected to improve, decreasing from 1.41 to 1.29 on average, saving around 
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90 TWh of electricity demand. This represents around a 30% reduction in cooling 
requirements per unit of IT electricity used. 

 Continuous hardware development has driven ongoing improvements in energy 
efficiency, a trend expected to persist. However, the operational efficiency gains of 
accelerated servers may be reaching their limit due to high utilisation and limited scope 
for further idle power reductions. In contrast, conventional servers are expected to see 
significant efficiency improvements over the next decade, particularly through 
reductions in idle power consumption. Nonetheless, the Base Case factors in continued 
improvements in hardware efficiency of both conventional and accelerated servers. 

Figure 2.10 ⊳ Breakdown of the factors driving electricity demand growth in 
data centres in the Base Case, 2024-2030 

 
IEA. CC BY 4.0. 

The main drivers of growth in electricity consumption from data centres  
are the increases in the stock and wattage of servers 

Global results 

Global electricity consumption by data centres is projected to reach around 945 TWh by 2030 
in the Base Case, representing just under 3% of total global electricity consumption in 2030. 
This is more than double the estimated approximately 415 TWh for 2024 (Figure 2.10), which 
accounted for around 1.5% of today’s global electricity demand. From 2024 to 2030, data 
centre electricity consumption grows by around 15% per year, more than four times faster 
than the growth of total electricity consumption from all other sectors. However, in the wider 
context, a 3% share in 2030 means that the data centre share in global electricity demand 
remains limited.  

Electricity consumption in accelerated servers, which is mainly driven by AI technology 
adoption (Box 2.1), is projected to grow by 30% annually in the Base Case, while conventional 
server electricity consumption growth is slower at 9% per year. Accelerated servers account 
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for almost half of the net increase in global data centre electricity consumption, while 
conventional servers account for only around 20%. Other IT equipment and infrastructure 
(cooling and other infrastructure) account for around 10% and 20% of the net increase, 
respectively (Figure 2.11). All three types of data centres – enterprise, colocation and server 
provider, and hyperscale – contribute to the growth in electricity consumption. 

Figure 2.11 ⊳ Global data centre electricity consumption in the Base Case, 
2020-2030 

 
IEA. CC BY 4.0. 

Around 70% of the growth in electricity demand from servers  
between 2025 and 2030 comes from accelerated servers 

Regional results 

The United States, China and Europe are projected to remain the largest regions for data 
centre electricity demand over the coming years. However, other regions are experiencing 
strong growth in data centre development, positioning them to play increasingly important 
roles in the global data centre landscape. A notable example is Southeast Asia, where 
electricity demand from data centres is expected to more than double by 2030, partially due 
to the presence of a regional hub in Singapore and southern Malaysia (Johor province). 

China and the United States are the most significant regions for data centre electricity 
consumption growth, accounting for nearly 80% of global growth to 2030. Consumption 
increases by around 240 TWh (up 130%) in the United States, compared to the 2024 level 
(Figure 2.12). In China it increases by around 175 TWh (up 170%). In Europe it grows by more 
than 45 TWh (up 70%). Japan increases by around 15 TWh (up 80%).  

Comparing data centre electricity consumption normalised per capita can give a sense of the 
importance of this sector in different economies. Africa has the lowest consumption at less 
than 1 kWh of data centre electricity consumption per capita in 2024, rising to slightly less 
than 2 kWh per capita by the end of the decade. However, there are strong differences within 
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the region, with South Africa showing strong growth and per-capita consumption more than 
15 times larger than the continental average in 2030, with an intensity higher than 25 kWh 
per capita. By contrast, the United States has the highest per-capita data centre 
consumption, at around 540 kWh in 2024. This is projected to grow to over 1 200 kWh per 
capita by the end of the decade, which is roughly as much as 10% of the annual electricity 
consumption of a US household. This intensity is also one order of magnitude higher than 
any other region in the world. 

An interesting trend is observed in China, where data centre consumption normalised per 
capita – at around 70 kWh in 2024 – is poised to overtake that of Europe (slightly less than 
100 kWh). By 2030, per-capita consumption in China reaches around 200 kWh, slightly less 
than the level seen in Japan (270 kWh) but more than the level in Europe (165 kWh). 
Per-capita consumption in India remains an order of magnitude lower, at around 15 kWh. 

Figure 2.12 ⊳ Data centre electricity consumption and data centre electricity 
consumption per capita by region in the Base Case, 2020-2030 

 
IEA. CC BY 4.0. 

The United States and China combined account for 80%  
of the growth in data centre consumption 

The growth of data centre consumption in the Base Case within the broader context 

Despite the strong increase, data centre electricity demand growth accounts for less than 
10% of global electricity demand growth between 2024 and 2030 in the Base Case 
(Figure 2.13). Other key drivers, such as industry output growth and electrification, the 
deployment of electric vehicles and the adoption of air conditioning, lead the way. However, 
while the absolute growth may appear smaller, data centres, unlike electric vehicles, tend to 
concentrate in specific locations (see section 2.6.2), making their integration into the grid 
potentially more challenging. 
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Figure 2.13 ⊳ Increase in electricity demand by sector in the Base Case,  
2024-2030 

 
IEA. CC BY 4.0. 

Data centres contribute more to global electricity demand growth  
than heavy industry or space and water heating 

2.3.2 Outlook in the sensitivity cases 

In this section, we present the results of our longer-term exploratory modelling of different 
potential outcomes for electricity demand. The results are presented to 2035, notably to 
inform the energy sector about possible outcomes on timelines consistent with energy sector 
planning horizons. These numbers serve as exploratory scenarios to inform technology and 
policy choices. It is crucial to consider the wide range of uncertainties, including the scale of 
AI adoption and the efficiency with which this additional service demand will be met (Luers, 
et al., 2024). 

Lift-Off Case 

This case explores the impact of stronger AI adoption and increased global demand for digital 
services, leading to even stronger deployment of data centre facilities than in the Base Case. 
This drives higher demand for accelerated servers to handle complex, power-hungry 
workloads. It is assumed that the supply chain will be highly adaptable, with scalable 
production capacity and minimal inertia. This would prevent shortages of high-performance 
chips.  

Importantly, it is assumed that various actions mitigate the local constraints on data centre 
development. First, data centres are assumed to have greater location flexibility than in the 
Base Case. The increased share of workloads with low latency requirements (e.g. AI training 
and several kinds of AI inference) reduces the need for proximity to customers. Instead, 
locational decisions can prioritise factors like generation capacity, grid availability and land 
accessibility. This shift reduces the risk of local project concentration and, in turn, opposition 
to new developments. Second, higher structural flexibility is assumed to make grid 
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integration less challenging. Combined with operational flexibility, the Lift-Off Case assumes 
a trend towards higher reliance on onsite generation for data centre demand, with the grid 
serving as backup. This approach could mitigate grid saturation risks. While clean power 
generation, such as renewables or even small modular nuclear reactors in the future, can be 
deployed for onsite generation, natural gas is also deployed for this purpose in the Lift-Off 
Case (see section 2.5.4).   

The Lift-Off Case trajectory sees global electricity demand from data centres in 2035 that is 
around 45% higher than in the Base Case, exceeding the 1 700 TWh mark and reaching 4.4% 
of global electricity demand (Figure 2.14). 

Figure 2.14 ⊳ Global data centre electricity consumption by sensitivity case,  
2020-2035 

 
IEA. CC BY 4.0. 

The outlook for data centre electricity demand is highly uncertain, driven by factors 
including efficiency improvements, AI uptake and potential energy sector bottlenecks 

High Efficiency Case 

In this case we assume that AI and digital services demand follows the same trajectory as in 
the Base Case. However, several efficiency strategies are implemented to counterbalance 
the increased energy demand resulting from the higher adoption of digital technologies, 
particularly AI. Efficiency improvements are primarily driven by a shift from enterprise data 
centres to colocation and service provider facilities, including highly efficient hyperscale data 
centres. This results in a reduction in the aggregated PUE, which falls to around 1.13 by 2035 
compared with 1.21 in the Base Case. 

Alongside these improvements, greater software efficiency plays a crucial role in the High 
Efficiency Case. This relies on approaches such as reducing energy demand per task through 
code optimisation and innovative algorithms, similar to past trends where improvements in 
algorithm efficiency significantly limited the growth of conventional computing demand. This 
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scenario assumes that models are “right-sized” for different tasks, with the technology sector 
aiming to reduce inference costs and consumers facing an information and incentive 
environment that supports decision making. OpenAI’s GPT-4.5 roadmap can be seen as a 
step in this direction, as it introduces the ability to adjust model compute use based on query 
complexity, thereby optimising resource use without compromising performance (OpenAI, 
2025). Additional improvements are also projected on the hardware side, for example 
through the penetration of full- and semi-custom integrated circuits, application-specific 
integrated circuits and field-programmable gate arrays, which is higher than in the Base Case, 
enabling significant energy savings. These specialised processors deliver far better energy 
performance compared to general-purpose processors like GPUs (see the Spotlight below on 
the future of computing). 

All these efficiency improvements result in a smaller installed IT capacity than in the Base 
Case, but one that still meets the same service demand. In aggregate, the High Efficiency 
Case unlocks energy savings of more than 15%, with global electricity demand from data 
centres reaching around 970 TWh by 2035. As a result, 2.6% of global electricity demand 
goes to data centres.  

Headwinds Case 

In this case, service demand does not grow as fast as in other scenarios, and AI sees a slower 
uptake. Difficulties in monetisation lead to a pullback in investment. This case also assumes 
stronger local constraints. Additional limitations, such as in the electricity supply chain (see 
Chapter 5), cause delays in data centre development in this case. As a result, the total 
installed IT stock by the end of the decade is projected to be smaller than in the Base Case, 
with growth plateauing beyond 2030 (this still means growing service demand, as the stock 
of IT equipment becomes more efficient over time). Similar to trends seen in the early 2010s, 
the improvements in efficiency are expected to offset most of the impact of increased IT 
stock utilisation, leading to a plateau in energy demand at around 700 TWh, limiting the 
growth of the data centre share of global electricity demand to less than 2% in 2035. 

 

The future of computing 

Energy efficiency has played a fundamental role in curbing energy demand growth from 
data centres over the past 20 years. Despite the massive growth in Internet users, data 
traffic and the digital intensity of the economy (Figure 2.3), data centre consumption as 
a share of global electricity demand has only increased from 1% in 2005 to 1.5% in 2024.  

However, with the shift away from enterprise data centres mostly tapped, AI servers 
already being highly optimised and utilised, and the approaching limits to semiconductor 
miniaturisation, this raises questions over further energy efficiency opportunities in data 
centres and the extent to which technologies and approaches can help curb energy 
demand growth to 2030 and beyond.  

S P O T L I G H T  
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Researchers have explored the opportunity of improvements in software, algorithms and 
hardware architectures (Leiserson, et al., 2020). These opportunities – some of which are 
specific to AI and others broadly across data centres and computing – can be generally 
categorised into hardware, software and cross-cutting approaches, which are briefly 
explained below. Table 2.1 outlines their current adoption levels, likely level of 
deployment in 2030 and scale of energy savings potential. These do not consider rebound 
effects that could counteract such energy efficiency improvements.  

Hardware 

 Low-power processors: processors designed to minimise power consumption, 
e.g. ARM-based CPUs, Intel Atom processors. 

 AI accelerators: specialised hardware that can perform AI tasks quickly and 
efficiently, e.g. servers (Nvidia GPU, Google TPU) and devices (NPU, Apple Neural 
Engine). 

 Task-optimised hybrid processors: processors that combine specialised processing 
units (“chiplets”) for specific tasks within a single package to maximise performance 
and energy efficiency, e.g. AMD Epyc CPUs. 

 Photonic integrated circuits: using light (photons) instead of electricity (electrons) 
to process information, reducing energy waste and enabling faster, more efficient 
data handling. 

 Energy-efficient memory and storage: using memory and storage technologies that 
minimise power consumption, e.g. low-power DDR5 memory and NVMe solid-state 
drives. 

 Memory proximity: placing data closer to the processor to reduce data transfer 
distances and energy consumption, e.g. high-bandwidth memory integrated with 
GPUs. 

 Innovative cooling technologies: advanced cooling methods to remove heat from 
data centres more efficiently, reducing energy use for cooling, e.g. liquid cooling 
systems (direct-to-chip, immersion). 

Software 

 Energy-efficient algorithms: developing AI algorithms that require less energy. 

 Task-specific models: smaller and more specialised AI models that are tailored to 
specific tasks rather than large, general-purpose models. 

 Model and code optimisation: refining existing model architectures, code and 
software to reduce computational resource and energy use. 

Cross-cutting 

 Co-design of software/hardware: co-designing software and hardware to leverage 
synergies to maximise energy efficiency and performance. 
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 Edge computing: running AI inference closer to end-users (devices, edge servers), 
reducing data transmission and running smaller models on more energy-efficient on-
device processors and distributing energy use over many distributed devices. 

 Virtualisation: running multiple virtual machines on a single physical server to 
increase utilisation rates and reduce the number of physical servers needed. 

 Intelligent energy management: intelligent power and task management, 
e.g. allocating tasks to energy-efficient hardware, using AI to monitor and adjust 
cooling and computational resource allocation to reduce energy use at the data 
centre level. 

 Quantum computing: computing that uses quantum mechanics to perform vastly 
more complex computation than classical computing techniques, e.g. IBM Quantum, 
Google Willow, Microsoft Majorana 1 and Amazon Ocelot.  

 Neuromorphic computing: computing that mimics the brain’s neural architecture to 
process data and computations more efficiently compared to classical computing, 
e.g. IBM TrueNorth and Intel Loihi 2. 

Table 2.1 ⊳ Current and potential 2030 energy savings in data centres 
from key technologies and approaches 

Technology/approach Current 
adoption 

Expected adoption  
in 2030  

Scale of energy 
savings potential 

Hardware    
Low-power processors ●● ●●● ●●●● 
AI accelerators ●●● ●●●● ●● 
Task-optimised hybrid processors ●● ●●● ●● 
Photonic integrated circuits ● ●● ●●● 
Energy-efficient memory and storage ●●● ●●●● ●● 
Memory proximity ●● ●●● ●● 
Innovative cooling technologies ●● ●●●● ●● 
Software    

Energy-efficient algorithms ●● ●●●● ●●●● 
Task-specific models ●● ●●●● ●●●● 
Model and code optimisation ●● ●●● ●●● 
Cross-cutting    

Codesign of software/hardware ●● ●●● ●● 
Edge computing ●● ●●● ●●● 
Virtualisation ●●●● ●●●● ●● 
Intelligent energy management ●●● ●●●● ●● 
Quantum computing ● ● ●●● 
Neuromorphic computing ● ●● ●●●● 

Note: A greater number of dots indicates a higher scale. 
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2.4 Implications of AI for ICT sector energy use  
Data centres are part of the broader ICT sector,1 which also includes telecommunication 
networks and end-user devices such as laptops and smartphones (ITU, 2018). The 
implications of AI for energy use in data centres – and in the broader ICT sector – depend 
largely on how generative AI is adopted and deployed, both of which are highly uncertain. 
This section explores possible scenarios and their implications. 

Consuming around 360 TWh of electricity in 2023, data centres accounted for one-third of 
overall ICT sector electricity use, estimated at over 1 000 TWh2 in 2023, equivalent to 4% of 
global electricity use (Figure 2.15). Telecommunication networks, including fixed and mobile 
access and core networks, consumed around 280 TWh, while personal computers, mobile 
phones and other connected devices used around 440 TWh. 

Figure 2.15 ⊳ Global electricity demand from data centres, data transmission 
networks, devices and cryptocurrency mining, 2015-2023 

 
IEA. CC BY 4.0. 

Energy use by data centres and cryptocurrencies have risen sharply since 2020,  
while devices and networks have seen slower growth 

Notes: CPE = customer premises equipment, including routers and modems; PCs = personal computers, 
including laptops and desktops. Networks include core and access networks. Other devices include the 
Internet of Things and surveillance cameras. 

Sources: IEA analysis based on data from Malmodin and Lundén (2018); IEA (2023); GSMA (2024) World Bank, 
(2024b); Malmodin, et al. (2024); Kamiya and Coroamă (2025); Cambridge Centre for Alternative Finance 
(2025), and company reports. 

 
1 According to the ITU-T L.1450 Recommendation, the ICT sector includes ICT end-user goods, ICT network 
goods, data centres and ICT services (e.g. software). User devices intended primarily for entertainment, such 
as televisions and gaming consoles, are accounted for in the entertainment and media sector. 
2 This figure excludes cryptocurrencies as well as the entertainment and media sector (including televisions, 
gaming consoles, cable television networks and content production), which are considered outside the ICT 
sector footprint. 
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Cryptocurrencies and televisions are large energy users often associated with the ICT sector 
but are technically outside the sector scope according to definitions from the International 
Telecommunications Union. Cryptocurrencies – primarily from Bitcoin mining – consumed 
around 125 TWh in 2023 (0.5% of global electricity), while televisions, peripherals and cable 
television networks consumed around 500 TWh (2% of global electricity). 

Data centres have contributed most to ICT sector energy growth since 2020, increasing by 
over 90 TWh between 2020 and 2023. Energy used for cryptocurrency mining has also 
increased strongly, growing by over 50 TWh since 2020. 

Energy use by telecommunication networks has grown slightly, driven by strong growth in 
5G mobile networks but partially offset by reductions in fixed networks from the switch from 
copper to fibre optic networks. Energy use by devices decreased in the early 2010s due to 
efficiency gains (e.g. switching from personal computers to laptops and telephones and from 
cathode ray tubes to liquid crystal displays) but has since increased, driven by the growth in 
the number of devices and new segments, such as the Internet of Things and surveillance 
cameras. There is considerable uncertainty around overall energy use by devices due to a 
lack of comprehensive data regarding use patterns and stocks. 

2.4.1 Drivers and outlook for edge applications of AI 

Most AI-related energy demand currently comes from large, centralised cloud and 
hyperscale data centres – both for training and inference (Kaack, et al., 2022). Some 
inference tasks are already conducted on user devices, as well as hybrid approaches where 
initial processing is done on the device and the final request is sent to a data centre. A 
broader shift towards AI inference at the “edge” of the network (closer to end-users) could 
have important implications for energy use – both in terms of where energy is consumed and 
how much is needed to support AI applications. 

Moving AI inference applications to the edge – to edge data centres and end-user devices 
such as laptops and smartphones – can be advantageous for use cases where fast response 
(reduced latency) is critical (Chen and Ran, 2019). On-device AI inference may also be 
important for operational resilience in situations where network connectivity is poor or when 
handling large volumes of data (e.g. video analysis). In addition, on-device AI inferencing 
offers improved data privacy by avoiding the transfer of sensitive data to centralised data 
centres.  

To facilitate on-device AI inferencing, device manufacturers are increasingly integrating AI 
acceleration hardware into laptops and smartphones, such as neural processing units (NPUs), 
Google’s Tensor chip, and Apple’s neural engine (ANE). This specialised hardware consumes 
much less power than CPUs and GPUs for AI tasks and can offload tasks from CPUs and GPUs 
to save power. However, compared to large data centres, edge devices face important 
resource constraints on computation, storage and power, limiting the type and size of the AI 
models they can run (Box 2.3). 
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Box 2.3 ⊳ Which AI models can run on smartphones and laptops? 

AI models that can run on user devices are smaller and more efficient versions of their 
cloud-based counterparts. Given the computational and energy constraints of 
smartphones and laptops, these models are compressed and optimised to have fewer 
parameters, require less memory and use less power, and often involve trade-offs 
between efficiency and accuracy. 

Many new smartphones sold today have processors that are capable of handling models 
with hundreds of millions of parameters, allowing them to complete tasks such as 
enhanced voice recognition and natural language processing for virtual assistants, real-
time object detection and tracking for augmented reality, computational photography 
and some generative AI capabilities. 

The latest flagship smartphones have processors that can handle models with well over 
a billion parameters, such as Google’s Tensor G4 (30 to 45 tokens per second for a model 
with over 3 billion parameters) and Qualcomm’s Snapdragon 8 Gen 3 (15 tokens per 
second for a 10 billion parameter model). AI acceleration hardware on flagship phones 
has become increasingly powerful. For example, the Apple A18 chip used in the iPhone 16 
series (introduced in 2024) is capable of 35 trillion operations per second, around 
six times more powerful than the A13 Bionic on the iPhone 11 from 2019.  

Laptops, edge servers and other devices with significant processing power 
(e.g. automated vehicles) can handle even larger models and complex tasks with higher 
accuracy. Nvidia announced its USD 249 Jetson Orin Nano Super computer in December 
2024, capable of 67 trillion operations per second while consuming 25 watts (W). In 
January 2025, the company announced Project DIGITS, offering 1 petaflop of AI 
performance, enabling it to support AI models with up to 200 billion parameters. DIGITS 
will sell for USD 3 000 from May 2025. 

Early studies estimate that NPUs on laptops consume in the range of 1 W to 5 W for most AI 
tasks. For example, generating 25 images with Stable Diffusion V2.1 consumed around 2 W 
to 4 W per image (Weinbach and Bajarin, 2024). Another study compared the power 
consumption of CPUs, GPUs and NPUs using the YOLOv5 object detection model at varying 
model sizes and precisions (Delli Abo, 2024). The NPU was found to use the least power 
(1.8 W to 2.5 W) compared with the CPU (27 W) and GPU (23 W to 51 W). Even factoring in 
the longer inference time, the NPU was still the most energy efficient, followed by the power-
intensive but faster GPU. The power consumption of an NPU on a smartphone was estimated 
to be around 0.5 W, around 80% lower than the CPU (Tan and Cao, 2023). 

Laptops typically consume between 20 W and 60 W during active use, making any 
incremental energy consumption from AI inference (1 W to 5 W) relatively small. With 
smaller and more optimised models at the edge, the shift towards AI inference at the edge 
is likely to reduce energy use in data centres with only a limited increase in energy use by 
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devices. Shifting inference tasks to edge devices can also help electricity systems by 
distributing power demand across different locations and time. 

Beyond the likely net energy savings from edge AI, there are potential negative indirect 
energy and environmental impacts from manufacturing AI-enabled devices. On-device AI 
capabilities and minimum hardware requirements for increasingly prevalent AI-powered 
applications could accelerate device replacement cycles in the near term. This could reverse 
the slowing of turnover rates over the past decade, with average replacement cycles for 
smartphones reaching 3.5 years (GSMA, 2025). International Data Corporation projects sales 
of generative AI smartphones (with NPUs capable of 30 trillion operations per second) to 
grow by 80% annually to 2028, reaching around 900 million units (70% market share) (IDC, 
2024b). Combined with the fact that AI acceleration hardware requires more energy to 
manufacture than conventional (non-AI) counterparts, shorter device lifespans and new 
demand for AI-enabled devices could increase manufacturing-related energy use and 
contribute to e-waste generation, particularly in the near term.  

The impacts of widespread generative AI adoption on data traffic and the energy use of data 
transmission networks are highly uncertain. Ericsson predicts that most of the traffic increase 
from AI – particularly from uplink data – will be due to video-based generative interactions 
using smartphone cameras, smart glasses, or extended reality devices to engage their 
environment or ask questions to a video-based large language model (Ericsson, 2024). It also 
predicts that most of these AI workloads will be executed in the cloud in real time or pre-
rendered to generate hyper-personalised content. Some medium-complexity AI workloads 
may migrate to smartphones, mitigating some traffic growth.  

However, the extent to which increased data traffic would affect network energy use is 
uncertain. Recent studies have demonstrated that fixed and core networks generally use the 
same amount of energy regardless of data traffic (Mytton, Lundén and Malmodin, 2024). In 
the case of mobile networks, capacity is just one factor that affects energy use, with coverage 
also being an important driver (Rouphael, et al., 2023). Within the context of other larger 
drivers of data traffic and connections – notably streaming video, the Internet of Things and 
extended reality – AI is unlikely to have a noticeable impact on network energy use, especially 
in the near term. 

In addition to AI inferencing at the edge, training on edge devices could have impacts on 
energy use across the ICT sector. Federated learning enables AI models to be trained on 
decentralised data using edge devices such as smartphones and laptops. Instead of bringing 
the data to a central server, federated learning brings the model training to the data source. 
Early studies have shown the potential for federated learning to reduce energy use and 
emissions associated with AI training (Qiu, et al., 2021). 
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2.5 Electricity supply to meet data centre demand 

2.5.1 Procurement strategies of technology companies 

Procuring electricity supplies that are reliable and cost-effective is crucial to meeting the 
rapidly growing electricity demand from data centres. Many technology companies and large 
data centre operators have set ambitious goals for reducing emissions and procuring clean 
energy (Table 2.2). To meet these objectives, data centre operators use various procurement 
strategies. These vary by company and region, with liberalised electricity markets generally 
offering more procurement choices than regulated markets. In addition to sourcing the grid 
electricity mix, procurement strategies include acquiring electricity through PPAs. Many 
companies also purchase renewable energy certificates to meet their clean energy targets. 

The recent surge in data centre electricity demand has led to significant interest in additional 
natural gas-fired power generation, largely in the United States, where natural gas is a low-
cost fuel. Gas turbine manufacturers are reporting an uptick in orders, and several large data 
centre operators have announced partnerships with utilities and energy companies 
developing new gas-fired power capacity. In Louisiana, for example, Entergy Louisiana is 
planning more than 2 GW of additional gas-fired power generation to provide power for 
Meta data centres. NextEra Energy and GE Vernova also aim to develop natural gas-fired 
power generation projects across the United States, primarily to meet the growing electricity 
demand of data centres. At the same time, many US utilities are currently revising their 
integrated resource plans to account for rising data centre electricity demand, proposing 
additional natural gas-fired capacity to meet it. To bring down emissions, some data centre 
operators are considering fitting natural gas-fired plants with carbon capture in the long run. 

Most renewable energy PPAs are financial agreements for annual volumes of electricity and 
are not tied to the hour-to-hour consumption profile of a data centre or the generation 
profiles of the renewable assets, which can also be located in different regions. While these 
PPAs help data centre operators meet their clean energy targets, the separation of 
renewable generation and data centre consumption often means other sources, like natural 
gas or coal, are used to meet physical electricity needs. This results in a physical electricity 
mix that differs from the procured, or “financial”, electricity mix. 

To enhance their sustainability strategies and further support decarbonised grids where they 
operate, some technology companies are concluding PPAs with hourly matching. This means 
that some or all of their electricity consumption is matched hour-by-hour by a portfolio of 
renewable energy and storage assets, or other types of low-emissions power generators 
located in the same region. For instance, Google seeks to achieve hourly matching, and 
Microsoft has signed hourly PPAs in support of its goal to be carbon negative by 2030. In 
order to achieve these goals, they are moving to deploy portfolios of renewable energy and 
storage projects that can increase hourly matching, as well as signing PPAs with dispatchable 
sources of low-emissions electricity, such as hydro, nuclear, geothermal or natural gas with 
carbon capture. In September 2024, for example, Microsoft and Constellation Energy 
concluded a 20-year PPA for the restart of the Three Mile Island nuclear plant.  
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Table 2.2 ⊳ Emissions reduction and clean energy targets of corporate data 
centre operators  

Company 
Estimated 

data centre 
capacity (MW) 

Net zero 
emissions 

target year 

Corporate clean,  
green or renewable  
electricity target* 

Current 
share  

Hourly 
matching  

target* 

Meta 9 780 2030 100% renewable since 2020 100%   

Google 8 960 2030 100% renewable since 2017 100% 100% by 2030 

Amazon 7 660 2040 100% renewable since 2023 100%   

Microsoft 6 970 2030 100% renewable by 2025 100% 100% by 2030 

Digital Realty 2 740    66%   

Equinix 1 850 2030 100% renewable by 2030 96%   

Tencent 1 760 2030 100% green by 2030 12%   

Alibaba Cloud 1 660 2030 100% clean by 2030** 56%*** 

Aligned 1 290 2040 100% renewable since 2020 100%   

Huawei 1 260 2040  > 50%   

Apple 1 240 2020 100% renewable since 2018 100%   

Vantage 1 180 2030   58%   

CyrusOne 1 120 2030 100% carbon-free energy 
by 2030 62%   

NTT Data 1 110 2035 100% renewable by 2030**  49%   

QTS Data Centers 1 060   65%**** 

Baidu 980 2030   5%   

GDS 980 2030 100% renewable by 2030 36%   

Chindata 900 2060 100% renewable by 2040** 7%   

Switch 660 2021 100% renewable since 2016 100%   

Princeton Digital 620 2030 100% green by 2030 14%  

* Only targets with specified years are included. ** Target covers data centres only. *** Percentage of clean 
electricity consumed at Alibaba Cloud’s self-built data centres. **** Percentage of low-emissions electricity 
utilised by QTS’ facilities. 

Notes: Data centre operators are ranked by their total estimated data centre capacity as of the end of the first 
half of 2024, based on OMDIA (2025). The OMDIA database may not be complete but was used to provide a 
consistent source across diverse companies for installed capacity. The net zero targets are for Scope 1 and 
Scope 2 emissions.  

As part of these strategies, technology companies are also supporting the development and 
commercialisation of innovative low-emissions baseload technologies, such as small modular 
reactors (SMRs) and next-generation geothermal. To date, plans to build up to 25 GW of SMR 
capacity associated with supplying the data centre sector have been announced worldwide, 
almost all of them in the United States, although projects are at varying stages of maturity 
and certainty. The first projects are expected to start to materialise only towards the end of 
this decade.  
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Advances in geothermal technology, including horizontal drilling and hydraulic fracturing 
pioneered by the oil and gas industry, are promising to increase the number of locations in 
which geothermal energy could be harnessed to provide a cost-competitive source of 
baseload electricity. Google has partnered with Fervo Energy, which developed a 3.5 MW 
first-of-its-kind next-generation geothermal power pilot project in Nevada. This project 
started feeding electricity into the grid in November 2023. In June 2024, Google and NV 
Energy, Nevada’s utility, entered into a power supply agreement for Fervo’s 115 MW Corsac 
next-generation geothermal project, which is currently under development. Meta has signed 
an agreement with Sage Geosystems for 150 MW of capacity to power its data centres from 
2027, while Microsoft and partner G42 are planning the construction of a data centre campus 
powered by geothermal power in Kenya. 

As an alternative to procuring electricity from utilities or through PPAs, some technology 
companies are co-locating data centres with power generation facilities, enabling them to 
generate some or most of their own electricity directly. The primary benefit of co-locating 
generation is potentially faster development times, as this approach can allow them to 
downsize or opt for an interruptible grid connection, saving costs and helping to alleviate 
grid congestion. The downsides are higher complexity, increased permitting requirements, 
higher investment costs, potentially lower reliability and a greater maintenance burden.  

Recent years have seen rising interest in co-locating data centres and generation assets. 
Google is partnering with Intersect Power and TPG Rise Climate to develop co-located clean 
energy projects with data centres, aiming for completion by 2027. Chevron and Engine No. 1 
are partnering with GE Vernova, with plans to supply up to 4 GW of natural gas capacity to 
co-located data centres, aiming to start operations by the end of 2027. Amazon and Talen 
Energy have signed a 10-year PPA for 300 MW to 960 MW of nuclear energy from the 
Susquehanna nuclear plant to supply a co-located data centre, although a recent Federal 
Energy Regulatory Commission ruling on the repurposing of existing grid-connected power 
plants to directly provide power to co-located loads halted plans to expand the electricity 
supply beyond the initially awarded 300 MW. The commission has recently initiated a 
process to examine the colocation policy.  

Box 2.4 ⊳ Data centre operators are leading the corporate PPA push 

A PPA is a long-term contract in which an electricity generator sells power to a buyer at 
a fixed price for a specified period. In regulated markets, green tariffs can serve a similar 
role, with a utility acting as an intermediary. To date, nearly 120 GW of operational 
renewables capacity has been procured through corporate PPAs globally (Figure 2.16). 
Technology companies operating data centres account for over 30% of this capacity. In 
2024, technology companies’ renewables PPAs were sufficient to cover roughly 20% of 
the estimated 415 TWh of global electricity demand from data centres. 

An additional 60 GW of PPA-related capacity is currently under development – meaning 
projects for which financing and/or permits have been secured or which are under 
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construction. Almost 40% of this capacity is contracted by data centre operators. Data 
centre operators have also been responsible for the lion’s share of recent 
announcements, accounting for almost 60% of the 34GW of the renewables capacity for 
which corporate PPAs have been announced but which has not yet entered the 
development stage. Projects that are under development or have been announced would 
provide sufficient capacity to cover approximately 15% of the projected electricity 
demand growth from data centres to 2030. 

Figure 2.16 ⊳ Global renewables capacity contracted through corporate 
PPAs by development status, offtaker and technology 

 
IEA. CC BY 4.0. 

Data centre operators account for over 30% of active PPAs  
and the majority of announced PPAs 

Notes: Op. = operational; Dev. = under development; Ann. = announced; DC = data centre; PPA = power 
purchase agreement. The cut-off date is February 2025. Only individual known projects are considered. 
Other includes bioenergy and geothermal. 

Source: IEA analysis based on data from BNEF (2025). 

Of the operational renewables PPA capacity contracted by data centre operators, 75% is 
located in the United States, with nearly 20 GW of solar PV and about 12 GW of onshore 
wind under contract there, followed by Europe with 20%. Over 50% of the capacity under 
development is also located in the United States – almost of all of it solar PV, while 
Europe accounts for around 35%. In the European Union and United Kingdom, offshore 
wind farms account for most of the under-development capacity contracted by data 
centre operators in the region. Announcements for additional PPAs have so far focused 
mostly on the United States, with nearly 90% of the announced capacity. While there has 
recently been an increase in announcements from other parts of the world, including 
Southeast Asia and India, significant regulatory hurdles continue to limit the deployment 
of PPAs, in particular in emerging market and developing economies. 
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2.5.2 Matching electricity supply with data centre demand 

Electricity supply to meet data centre demand can come from a wide set of sources, each 
with unique characteristics related to technical performance, cost, emissions, the 
development process and lead times. Consideration of these options, either to be developed 
onsite or connected through the grid, is critical to scaling up electricity supply to meet data 
centre demand.  

Table 2.3 ⊳ Sources of electricity to match the needs of data centres 

Electricity  
source 

Construction 
period 

Variable or  
dispatchable 

Global average CO₂ 
intensity 

(g CO₂/kWh) 

Global average 
LCOE 

(USD/MWh) 

Utility solar PV 1-4 years Variable 0 60 

Wind onshore 2-5 years Variable 0 50 

Wind offshore 3-7 years Variable 0 110 

Hydropower plant 5-15 years 
Variable (run-of-river) 

Dispatchable (reservoir) 
0 80 

Conventional 
geothermal 3-8 years Dispatchable 0 80 

Nuclear (new) 5-15 years Dispatchable 0 90 

Nuclear (restart) 2-5 years Dispatchable 0 60 

Coal 3-6 years Dispatchable 960 80 

Gas CCGT 2-4 years Dispatchable 390 80 

Gas GT 1-3 years Dispatchable 620 220 
Grid connection 3-7+ years Dispatchable United States: 350 

China: 600 
Southeast Asia: 610 

Europe: 240 
World: 460 

- 

Notes: CO2 = carbon dioxide; g CO₂/kWh = grammes of carbon dioxide per kilowatt hour; CCGT = combined-
cycle gas turbine; GT = gas turbine; LCOE = levelised cost of electricity; MWh = megawatt hour. Construction 
period refers to typical projects, excluding supply chain equipment delays. Average emissions intensity is 
assessed on direct emissions from the average mix between 2021 and 2023. Other assumptions come from 
the WEO-2024 (IEA, 2024). Nuclear (new) includes small modular reactors. 

As data centres are projected to grow rapidly over the years to come, the strategy to build 
out and ensure a stable and efficient source of electricity becomes crucial. Currently, the only 
reliable electricity sources that can be developed within a short timeframe – ideally one to 
two years (Table 2.3) – are solar PV and gas turbines, aligning with the typical construction 
timeline of data centres. Even in these cases, supply chain delays or tight supplies can further 
extend development times (Box 2.5). Wind turbines could also be a viable option in terms of 
deployment speed; however, lengthy permitting processes often extend their timeline to 
around five years, a similar development time to conventional geothermal, or longer. Other 
dispatchable technologies, such as large-scale nuclear reactors or hydropower plants, 
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typically require closer to a decade or more to complete. Once SMRs or next-generation 
geothermal become commercial, they may also offer medium-length development times of 
approximately three to five years. 

Box 2.5 ⊳ Will strained supply chains slow down the growth of natural gas-fired 
power generation?   

Low fuel costs, high reliability and the ability to operate at high load factors make natural 
gas-fired generation an attractive option for data centre operations in the United States, 
in particular. Several gigawatts of new capacity targeting the data centre market have 
been announced by developers in late 2024 and early 2025. These announcements come 
on top of the substantial volumes of new gas-fired capacity planned by utilities to meet 
overall electricity demand growth. 

As a result, orders for new gas turbines from utilities and project developers have surged 
over the past two years. However, this sudden increase in orders is hitting a global gas 
turbine supply chain that has seen limited investment in manufacturing capacity due to 
years of stagnant electricity demand in advanced economies and a recent slowdown in 
global additions of gas-fired power. Global additions of natural gas plants peaked at 
nearly 110 GW in 2002, have averaged around 60 GW per year since then and have fallen 
to an average of 40 GW per year since 2020.  

Three main manufacturers – GE Vernova, Siemens Energy and Mitsubishi Power – supply 
turbines for about two-thirds of the gas-fired power plants currently under construction 
globally and are reporting growing backlogs. Turbine deliveries for new power plants now 
face delays of several years in many instances. The uptick in activity has meant that other 
elements of supply chains, including labour and other goods, are also tight, potentially 
delaying the commissioning of new gas-fired power plants beyond 2030. 

These extended delivery timelines cast doubt on the ability of utilities and energy 
companies to scale up natural gas-fired generation as quickly as planned to meet rising 
demand, especially in the near term. They are also driving up capital costs for the 
developers of new gas-fired plants. High demand and constrained supply increase the 
pricing power of the turbine manufacturers. Longer delivery timelines lead to increased 
financing costs and can disrupt construction schedules, increasing the risk of cost 
overruns. Consequently, some developers are opting to pay premiums to move to the 
front of the queue for turbine deliveries.  

The strained supply chain is also affecting existing plants. Servicing activity and new unit 
production compete for factory capacity, and as manufacturers prioritise the production 
of new turbines, this reduces the availability of refurbishment capacity and component 
parts, raising the risk of plant outages. Additionally, the increased demand has driven up 
the cost of new long-term gas turbine maintenance contracts, raising plant operating 
expenses. 
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The projected growth in electricity demand means that there is a need for additional 
secure capacity to ensure the reliability of the electricity supply. In the United States, the 
revised integrated resource plans of the country’s utilities call for an additional 84 GW of 
natural gas-fired capacity by 2035 (see Box 2.6 for more details). The limited availability 
of gas turbines may require utilities and project developers to explore alternatives to new 
natural gas-fired plants to address near-term growth in the demand for electricity and 
secure capacity. This includes upgrading existing plants to enhance their electrical 
output, although tight supply chains have seen lead times for such measures go up as 
well. Technical improvements, such as retrofitting better turbine blades, water injection 
and inlet air cooling, can increase the efficiency and raise the capacity of simple open-
cycle gas turbines by 3-10%. If applied to the United States’ fleet of existing open-cycle 
gas turbines, such refurbishments could provide about 4 GW to 15 GW of additional 
capacity. If sufficient space is available at the site, open-cycle gas plants can also be 
upgraded to combined-cycle through the addition of a heat recovery steam generator 
and steam turbine. A combined-cycle gas turbine power plant can produce up to 50% 
more electricity from the same amount of fuel. 

Technology costs are another important factor in considering supply options to meet data 
centre demand. Wind and solar PV technologies are currently among the cheapest sources 
of electricity. Additionally, in regions where natural gas prices are low, such as the 
United States and the Middle East, gas turbines offer an alternative. To be comparable with 
dispatchable sources of electricity, solar PV and wind need to be paired with storage to 
increase their availability throughout the day, but the cost comparison remains valid. Coal-
fired power can be one of the lowest-cost sources of electricity in places where prices on CO2 
emissions are low or zero, but development times for coal plants can be quite long outside 
China.  

Emissions at the point of electricity generation are an important factor, especially in light of 
the sustainability targets set by many technology companies and national and international 
climate goals. Coal-fired power has the highest emissions intensity of the potential options 
(oil-fired power is of a similar level), with natural gas-fired power plants emitting roughly half 
as much CO2 per unit of electricity output. Excluding indirect emissions from their life cycle – 
such as extraction, manufacturing and decommissioning – renewable energy and other low-
emissions sources like nuclear energy have no direct CO₂ emissions. 

Hourly matching: What does it really take?  

The most common arrangements for procuring renewable electricity are based on annual 
volume matching. Annual matching means that enough capacity is procured to meet 100% 
of the user’s electricity demand over the course of the year, without consideration of 
precisely when demand and supply occur. Conventional “annual matching” PPAs can help 
drive the installation of new renewables capacity. However, hourly matching of low-
emissions electricity PPAs ensures that electricity consumption in each hour of the year is 
met by low-emissions energy sources.  
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Dispatchable sources of electricity generation, such as hydro, geothermal and nuclear, can 
generally match hourly demand throughout the year, but this is not the case with variable 
renewables. For example, where solar PV alone is procured to cover 100% of annual demand, 
the share of hourly demand covered can average 35-45%. Effectively this means that on an 
hourly basis, solar PV output is only able to meet 35-45% of data centre demand due to its 
output profile. In the hours when the procured solar PV is above data centre demand, the 
excess can be available to the grid and other consumers. In the hours when solar PV output 
is below hourly data centre demand, the remaining demand must be met by other sources. 
Again, this results in a physical electricity mix that differs from the procured, or “financial”, 
electricity mix. The associated CO2 emissions for the electricity supply to meet data centre 
demand depend on the extent to which low-emissions sources cover data centre demand 
and the emissions intensity of the grid electricity.  

Figure 2.17 ⊳ Daily average electricity generation profiles of wind, solar PV 
and battery storage to meet baseload demand in Virginia, 
United States 

 
IEA. CC BY 4.0. 

Renewables, coupled with storage, can meet a flat demand profile 

Note: The graphs depict four different use cases considering 1.5 GW of solar PV, wind or both, and a 1 GW 
battery with 4 GWh of storage.  

Hourly matching of the procured electricity supply to the data centre electricity demand is 
an approach pursued by several large technology companies, but achieving this ambition 
with variable renewables comes with challenges. Solar PV and wind generation are 
inherently variable. Solar PV varies across the day and seasons. Wind production is less 
variable on average but can vary quickly from hour to hour, with extended periods of low or 
high generation. However, hybrid projects combining solar PV, wind and storage offer a 
better match to baseload demand, with storage helping to smooth out variable output from 
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renewables. Solar PV combined with battery storage has the advantage that it can be 
deployed quickly and provides a more constant supply. Combining solar PV, wind and battery 
storage results in an even flatter supply (see Figure 2.18). To align with baseload demand on 
an hourly basis, the installed capacity of renewable sources must be higher than the average 
demand.  

In order to analyse the ability of solar PV, wind and battery storage to meet baseload 
demand, a new analysis of over 1 000 use cases covering eight configurations in more than 
100 regions was carried out. The regions include European countries, each state of the 
United States and each province of China. Different procurement strategy configurations 
were tested, resulting in different combinations of renewable and storage technologies. The 
remaining portion of electricity demand not covered by renewable sources was assumed to 
come from the grid at the average industry retail price. The analysis measures the hourly 
matching of supply and demand, the average cost and the associated CO2 emissions.  

Figure 2.18 ⊳ Average cost of electricity consumed by component for different 
portfolios and average CO2 emissions intensity in the 
United States, 2025 

 
IEA. CC BY 4.0. 

80% hourly matching low-emissions portfolios are comparable  
in costs with annual volume matching projects in the United States. 

Notes: MER = market exchange rate; Ind. = industrial; CCGT = combined-cycle gas turbine. Annual matching = 
portfolio of wind and/or solar PV optimised to meet 100% of annual demand; 50% hourly matching = portfolio 
of wind, solar PV and batteries to reach at least 50% hourly matching with demand;  80% hourly matching = 
to reach at least 80% hourly matching with demand; 90% hourly matching = to reach at least 90% hourly 
matching with demand; 99%+ hourly matching = to reach at least 99% hourly matching with demand. 
Assumptions for the industry retail price of electricity are taken from 2023 historical data. Assumptions for 
gas turbine costs are based on a natural gas price of USD 19/MWh and an 85% capacity factor for CCGT 
technology with 60% efficiency. Assumptions for capital expenditures and operational expenditures for solar 
PV, onshore and offshore wind, and battery storage are taken from IEA (2024) for the year 2025.  
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In the “annual match” configuration where solar PV alone is procured to cover 100% of 
annual demand, the share of hourly demand covered averages about 40% in the 
United States in most locations (see Figure 2.18). Where onshore wind alone is procured, 
hourly coverage averages almost 65% but ranges from 55% to 75% depending on the US state. 
In Europe and China, solar PV alone covers an average of 40%, with a wide range across 
countries and provinces, and wind alone covers similar shares to the United States. In China 
the range across provinces is wider for wind alone, ranging from 40% to 80%. 

We assessed the optimal sizing of solar PV, onshore wind and hybrid projects to minimise 
costs while meeting annual electricity demand in volume (referred to as the “hybrid annual 
matching” configuration). For hybrid projects that combine wind and solar PV to meet annual 
electricity demand, the average hourly coverage share is 70%, with a range from 40% to 80% 
across different states of the United States. In Europe, the share of demand covered by 
renewables in the hybrid annual matching configuration averages 70% and ranges from 40% 
to 85% in countries with the best renewable potential. In China, the annual matching 
configuration for hybrid projects usually covers 65% of baseload demand, ranging from 40% 
to almost 85% across provinces. 

We also explored the cost optimal configuration of wind, solar PV, battery storage and 
purchasing of grid electricity. The assessment is based on resource potential and grid 
electricity costs, without specific constraints on volume or demand coverage. In this “cost 
optimal” configuration, renewables cover an average of 50% of demand in the United States, 
ranging from 25% to 70% in the most resource-rich states.  

The last portfolios focused on the optimal sizing of wind, solar PV and battery storage 
portfolios to achieve a specific target of hourly matching between renewables supply and 
baseload demand. The analysis finds that ensuring 80% hourly matching of renewable 
sources with baseload demand is comparable in cost to the annual matching configuration 
in the United States, with the added benefit of guaranteeing 80% hourly matching with low-
emissions sources. This 80% guarantee configuration aligns with the grid retail price in the 
United States at USD 80 per megawatt hour (MWh) (without including grid fixed costs like 
connection charges). Achieving nearly full hourly matching with hybrid projects adds a 
premium to overall costs, over 50% above the grid electricity price for industry in the case of 
the United States, because of the required additional capacity in both supply and storage. 
However, a higher share of hourly matching reduces exposure to electricity market price 
volatility, protecting consumers from high prices.  

Looking across regions, we find several similar results, including that 80% hourly matching 
portfolios are comparable in cost and even more affordable than annual matching hybrid 
projects. Annual matching hybrid projects can be more expensive because of their lack of 
storage and greater reliance on grid electricity. In many countries in Europe and provinces in 
China, the respective average costs of USD 100/MWh and USD 70/MWh for the “80% hourly 
matching” configuration are below the 2023 average industry retail electricity price.  
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The analysis also revealed several regional differences. In the cost optimal configuration for 
Europe, the share of demand covered by wind, solar PV and battery averages 80%, which is 
notably higher than for the United States due to a generally more expensive electricity price. 
In China, the coverage share averages 70% and ranges between 30% and more than 90% in 
some provinces in the most cost-effective case because of the lower investment costs 
compared to the United States. When full hourly matching is the target, the cost premium in 
China is 5% above the 2023 average grid cost. In Europe, 90% hourly matching can be 
achieved for USD 105/MWh and 99% coverage for less than USD 150/MWh on average (see 
Figure 2.19). 

Figure 2.19 ⊳ Total cost of electricity per unit consumed for hybrid options of 
wind, solar PV and battery in the United States, Europe and China 

  
IEA. CC BY 4.0. 

Hybrid wind, solar PV and battery portfolios can meet 80% of baseload demand at an 
average cost competitive with industry retail prices in the United States, Europe and China 

Notes: MER = market exchange rate. Annual matching = portfolio of wind and solar PV optimised to meet 
annual volume demand target; 80% hourly matching = portfolio of wind, solar PV and batteries to reach at 
least 80% hourly matching with demand; 99%+ hourly matching = to reach at least 99% hourly matching with 
demand. Each dot represents a different use case based on the renewable potential of various locations in the 
United States, Europe and provinces in China. Assumptions for the industry retail price for electricity are taken 
from the minimum and maximum values across historical data between 2014 and 2023 for each country in 
Europe, US state and province of China. Assumptions for capital expenditures and operational expenditures 
for solar PV, onshore and offshore wind, and battery storage are taken from IEA (2024) for the year 2025.  

Constant baseload demand for data centres does not necessarily imply conventional 
dispatchable power sources. As variable renewables are now cheaper and faster to deploy 
in many regions compared to other technologies, pairing them with storage can increase 
their alignment with baseload-type demand. Hybrid portfolios of wind, solar PV and storage 
can cover a relatively high share of demand on an hourly basis at a competitive price. Aiming 
for a very high share of hourly matching raises the costs, which can exceed the average 
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industry retail price depending on the region. Compared with conventional annual matching 
PPAs, hourly matching PPAs with a high share of low-emissions sources provide a higher 
guarantee of covering electricity demand, reducing CO2 emissions and mitigating the 
volatility risk associated with electricity prices. The role of renewables should also be 
analysed at the broader system level to better assess the balance of the variability. 

2.5.3 Electricity supply in the Base Case 

Global electricity generation to supply data centres is projected to grow from 460 TWh in 
2024 to over 1 000 TWh in 2030 and 1 300 TWh in 2035 in the Base Case. Renewables meet 
nearly half of the additional demand to 2030, followed by natural gas and coal, with nuclear 
starting to play an increasingly important beyond 2030 (Figure 2.20). 

Figure 2.20 ⊳ Global electricity generation for data centres and the associated 
CO2 emissions in the Base Case, 2020-2035 

 
IEA. CC BY 4.0. 

Between now and 2030, renewables meet nearly half of the increase in global data centre 
electricity demand, followed closely by natural gas and coal-fired electricity generation 

Coal, with a share of about 30%, is the largest source of electricity, though this varies 
significantly by region, with the highest contribution found in China. Renewables – primarily 
wind, solar PV and hydro – currently supply about 27% of the electricity consumed by data 
centres globally. Natural gas is the third-largest source today, meeting 26% of the demand, 
followed by nuclear with 15%. It should be noted that this analysis considers the fuel mix of 
the electricity physically consumed by data centres (considering both onsite generation and 
electricity received through the grid, taking into account the fuel mix of the local electricity 
systems they are located in) rather than the contractual mix of different data centre 
operators. 
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Taken together, renewables remain the fastest-growing source of electricity for data centres, 
with total generation increasing at an annual average rate of 22% between 2024 and 2030, 
meeting nearly 50% of the growth in data centre electricity demand. This growth is primarily 
driven by the rising deployment of wind and solar PV in power systems across the globe, with 
some of the new capacity financed through PPAs with technology companies. Some data 
centre operators also invest directly in co-located renewables. Even so, new demand from 
data centres is a significant near-term driver of growth for natural gas-fired and coal-fired 
generation, through both higher utilisation of existing assets and new power plants. Natural 
gas and coal together are expected to meet over 40% of the additional electricity demand 
from data centres until 2030. After 2030, SMRs enter the mix, providing a source of baseload 
low-emissions electricity to data centre operators. Currently, hyperscalers are among the key 
corporate backers of SMR development. Coupled with the ongoing growth of renewable 
electricity generation, the resulting increase in nuclear electricity generation leads to an 
absolute decline in coal-fired generation for data centre operations by 2035. Consequently, 
CO2 emissions from electricity generation for data centres peak at around 320 Mt CO2 by 
2030, before entering a shallow decline to around 300 Mt CO2 by 2035. Despite rapid growth, 
data centres remain a relatively small part of the overall power system, rising from about 1% 
of global electricity generation today to 3% in 2030, accounting for less than 1% of total 
global CO2 emissions (see Chapter 5 for more details).  

Regional outlook 

The United States and China are by far the largest data centre markets today. In both 
countries, most of the electricity consumed by data centres is produced from fossil fuels, 
which also meet most of the increase to 2030. However, the rising deployment of 
renewables, and later nuclear, is expected to slow the growth of fossil fuel power generation 
after 2030. 

With a share of over 40%, natural gas is currently the biggest source of electricity for data 
centres in the United States, followed by renewables – mostly solar PV and wind – at 24%, 
as well as nuclear and coal power with shares of close to 15% and around 20%, respectively. 
As demand growth is particularly rapid over the next five years, natural gas is the largest 
source of additional supply, adding over 130 TWh of annual generation until 2030. Utilities 
are revising their integrated resource plans, with the construction of additional gas-fired 
power plants planned across the country, some of them to support the increase in data 
centre loads (see Box 2.6). Furthermore, some data centre operators are partnering with 
utilities and energy companies to expand gas-fired capacity, some of it directly co-located 
with data centres. Renewables are the second-largest source of additional electricity supply, 
adding 110 TWh to data centre electricity supply between 2024 and 2030. This is mainly due 
to the continuing increase in the share of wind and solar PV in the electricity mix of most 
states, as well as some data centre operators investing in co-located renewables.  

Nuclear power plays a significant role in meeting data centre electricity demand in the 
United States, particularly after 2030 when the first SMRs are expected to be commissioned. 
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Technology companies have plans to finance more than 20 GW of SMRs to date, though 
successful development of the technology could open up even larger opportunities. Together 
with the ongoing increase in renewable electricity generation, the expansion of SMRs 
reduces the need for additional natural gas-fired generation so that by 2035, low-emissions 
sources account for over 55% of the US data centre electricity supply mix (Figure 2.21). 
Beyond 2035, the addition of carbon capture to some natural gas-fired power plants is 
expected to further boost the supply of low-emissions electricity to data centres. 

Figure 2.21 ⊳ Electricity generation for data centres in the United States and 
China in the Base Case, 2020-2035 

 
IEA. CC BY 4.0. 

Natural gas is set to continue to dominate the near-term data centre  
electricity supply in the United States, with coal predominant in China 

In China, as data centres are located mostly in the east of the country, their electricity supply 
is dominated by coal with a share of about 70%, followed by renewables with nearly 20%, 
nuclear close to 10% and natural gas accounting for the remainder. Between 2024 and 2030 
both coal and renewables – mostly solar PV and wind – add about 90 TWh to the data centre 
electricity supply. The increase in renewables is supported by their rising share in the grid 
electricity mix, provincial colocation mandates and policies to prioritise the construction of 
data centres in renewables-rich western China. After 2030, the introduction of SMRs 
significantly boosts the nuclear share of the data centre electricity mix. Between 2030 and 
2035, the rise in renewables and nuclear pushes coal into decline. By 2035, both sources 
together make up 60% of China’s data centre electricity supply (Figure 2.21). 

In Europe, renewables and nuclear are set to supply most of the additional electricity 
required, with their combined share rising to 85% by 2030. Japan and Korea together 
account for about 5% of global data centre electricity demand today, a share they are 
expected to retain to 2030. Renewables and nuclear are set to provide nearly 60% of the 
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electricity consumed by data centres in 2030, up from 35% today. The rest of the world is 
responsible for about 10% of total data centre electricity generation, with Southeast Asia 
and India accounting for a significant portion of that. In both regions, coal remains a key pillar 
of the data centre electricity supply, but renewables are projected to eclipse it by 2035.  

Box 2.6 ⊳ How are utilities in the United States planning to meet additional 
electricity demand? 

Over the course of 2024, many US utilities revised their load growth projections, 
anticipating a significant increase in electricity demand from data centres, manufacturing 
and – to a lesser degree – electric vehicles and electric heating. They are seeking to meet 
this additional demand primarily by building new natural gas-fired power plants and 
expanding the capacity of low-emissions sources of electricity, most notably wind and 
solar PV, as well as battery storage to facilitate the integration of variable renewables. In 
its updated integrated resource plan for North Carolina, Duke Energy, for example, has 
announced plans to build 7 GW of renewables capacity,  3.6 GW of  natural gas-fired 
capacity, 1.8 GW of pumped storage hydro and 1.1 GW of battery storage until 2035, 
while Dominion Energy plans to add 21 GW of low-emissions power generation, including 
1.3 GW of SMRs, as well as 5.9 GW of gas-fired capacity and 4.5 GW of battery storage 
across Virginia and North Carolina until 2039. 

Integrated resource plans are comprehensive, regularly updated plans that utilities 
employ to outline their generation requirements over periods ranging from 5 to more 
than 20 years, identifying the necessary resources to meet anticipated demand and 
ensure reliable service while balancing economic, environmental and regulatory 
constraints and objectives. They are essential for planning and are mandated by 
regulatory authorities in 33 states. 

As of Q4 2024, the integrated resource plans of the United States’ utilities call for the 
installation of an additional 260 GW of wind and solar PV capacity until 2035, 20 GW less 
than planned at the end of last year. Gas-fired capacity is set to grow by 84 GW over the 
same period, 32 GW higher than planned at the end of 2023 (RMI, 2025). Utilities cite 
grid constraints and low reserve margins in several systems, as well as the high reliability 
needs of data centres, as primary reasons for the renewed dash for gas. 

Modernising and expanding the grid to facilitate the integration of variable renewables 
and ensure reliability is another key feature of many integrated resource plans. Grid 
modernisation involves upgrading infrastructure, rolling out smart grid technologies and 
enhancing cybersecurity measures. The goal is to manage electricity flows efficiently and 
minimise the risk of outages.  

In the Base Case, the growth in global data centre electricity consumption sees the 
installation of over 320 GW of additional electricity generating capacity between 2024 and 
2035, including around 45 GW of battery storage, nearly 80% of it in the United States and 
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China. Renewables account for nearly two-thirds of this additional capacity. Natural gas-fired 
capacity also grows, driven primarily by the expansion of natural gas plants to supply data 
centres in the United States. Gas turbines could also be deployed as a backup power source 
for large data centres receiving electricity from the grid (Box 2.7). More than half of the 
additional gas-fired capacity is installed before 2030 to meet immediate electricity needs, 
while after 2030, growth in nuclear picks up so that, together with renewables, low-
emissions sources cover all of the additional demand growth. Nearly 20 GW of new nuclear 
capacity is commissioned between 2030 and 2035, mostly from SMRs in the United States 
and China (Figure 2.22).  

Figure 2.22 ⊳ Annual average data centre power supply capacity additions 
by fuel and region in the Base Case, 2024-2030 and 2031-2035 

 
IEA. CC BY 4.0. 

While renewables account for two-thirds of the additional data centre electricity supply 
capacity, significant volumes of natural gas, coal and nuclear capacity are also added 

Box 2.7 ⊳ Backup power for data centres 

Backup power sources for data centres are critical in ensuring uninterrupted operations 
during power outages. The primary technologies employed include batteries, diesel 
generators, gas generators and gas turbines. For additional redundancy, data centre 
operators also usually request a minimum of two lines to connect their facilities to the 
electricity grid. 

Battery-based uninterruptible power supply systems provide instantaneous power 
during outages, thereby preventing operational disruptions. They frequently also offer 
protection against power surges and voltage fluctuations. However, the duration of 
power supply from these systems is typically limited, ranging from a few minutes to an 
hour. The system is therefore usually only designed to bridge the time it takes for 
alternative backup power sources to start up. 
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Diesel generators can deliver sustained power for extended outages. Their reliability and 
ability to handle substantial power loads are crucial for data centre operations. However, 
diesel generators emit pollutants. Additionally, they generate significant noise and 
require onsite storage of fuel, which can be a constraint in urban environments. 

Gas generators provide a cleaner alternative to diesel, emitting fewer pollutants and 
generally exhibiting higher fuel efficiency. However, they are dependent on a continuous 
gas supply, which can be a vulnerability if the supply is disrupted. The initial capital 
expenditure associated with gas generators is also higher compared with diesel 
generators. 

Gas turbines are another potential option. They offer a reliable and continuous power 
source, essential for maintaining operations during prolonged outages. Gas turbines are 
more efficient and less emissions-intensive than diesel generators. However, the initial 
investment for gas turbines, which tend to be significantly larger than generators, is 
substantial, and permitting burdens can be more significant. Their size and the need to 
combine several units to achieve the necessary reliability required of a backup power 
source make them suitable only for very large data centres. Just like gas generators, they 
are reliant on an uninterrupted supply of gas. As start-up times are longer than for gas or 
diesel engines (around one minute for aeroderivative turbines and five minutes for 
single-shaft, utility-size gas turbines), the battery backup will need to be sized for longer 
runtimes accordingly. 

Each backup power technology must be evaluated according to the specific requirements 
and constraints of the data centre, especially the specified availability levels. A 
combination of different technologies can enhance the robustness and reliability of 
backup systems. Section 2.6.3 looks at the possibility of leveraging backup power systems 
for flexibility.  

2.5.4 Electricity supply in the sensitivity cases 

The sensitivity cases examine the uncertainties surrounding future electricity demand from 
data centres and the implications for electricity generation over the next five to ten years. 
Across all cases, renewables play a pivotal role in meeting the growing electricity demand. 
However, fossil fuels remain important for meeting the near-term surge in demand up to 
2030. 

Across all cases, renewables meet most of the additional electricity demand from data 
centres to 2035. In the High Efficiency Case and the Headwinds Case, global data centre-
related electricity generation grows more slowly than in the Base Case. In the High Efficiency 
Case it rises to about 1 100 TWh by 2035, more than 15% lower than in the Base Case. In the 
Headwinds Case it reaches 790 TWh, more than 40% lower than in the Base Case. In both of 
these cases, renewables meet 55% or more of the increase in data centre electricity demand 
to 2035, compared with around 50% in the Base Case, although in both cases, the increase 
is smaller in absolute terms. In the Lift-Off Case, where global electricity generation 
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associated with data centres surges to nearly 2 000 TWh by 2035, 45% higher than in the 
Base Case, around 45% more renewable electricity generation is added between 2024 and 
2035, but long grid connection queues mean that most of the additional increase beyond 
that is met by fossil fuels. 

Across the outlook period, fossil fuels, particularly coal and natural gas, remain crucial for 
addressing potential demand spikes (2.24). In the Lift-Off Case, between 2024 and 2030, 
nearly 50% of the additional electricity generated for data centres comes from fossil fuels. 
Natural gas-fired power generation grows about 1.5 times faster than in the Base Case, with 
the United States experiencing the most significant absolute increase. Similarly, coal-fired 
generation grows twice as fast, with China contributing most of the additional generation. 
For the period between 2024 and 2035, fossil fuels account for about 35% of the additional 
electricity consumed by data centres globally. In the High Efficiency Case and the Headwinds 
Case, fossil fuels respectively supply around 35% and 15% of the additional electricity, as 
opposed to 28% in the Base Case. The share of fossil fuels in total electricity generation for 
data centres in 2035 remains at about 40% across all cases. 

Figure 2.23 ⊳ Electricity generation for data centres by fuel and case, 2035 

  
IEA. CC BY 4.0. 

In all cases, fossil fuels remain an important element of the  
data centre electricity supply mix by 2035 

Note: High Eff.  = High Efficiency. 

The Base, High Efficiency and Lift-Off Cases all see an increase in the contribution of nuclear 
power to the data centre electricity supply between 2030 and 2035, driven mainly by the 
commissioning of SMRs in the United States and China, which together account for over 80% 
of total global nuclear electricity generation for data centres. The share of nuclear in the data 
centre electricity mix ranges between 16% and 18% in the Base, High Efficiency and Lift-Off 
Cases. It is only in the Headwinds Case, with its less favourable environment for AI and data 
centre operators, that these investments do not materialise, and nuclear electricity is 
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sourced entirely from large-scale reactors connected to the grid, with the nuclear share 
dropping to about 10% of the data centre electricity supply mix by 2035.  

Figure 2.24 ⊳ CO2 emissions associated with electricity generation for data 
centres by case, 2030 and 2020-2035 

  
IEA. CC BY 4.0. 

Data centre electricity supply-related CO2 emissions peak at 215 Mt CO2 to 320 Mt CO2 in 
all cases except the Lift-Off Case, which sees a plateau at around 475 Mt CO2 in the 2030s 

In the Base, High Efficiency and Headwinds Cases, CO2 emissions from electricity generation 
for data centres peak around or before 2030. However, in the Lift-Off Case, which sees 
significantly higher levels of fossil fuel-based electricity generation, they continue to increase 
until the early 2030s, peaking at nearly 1.5 times the maximum emissions level of the Base 
Case.  

In the Headwinds Case, emissions peak earlier than in the Base Case, dropping to about 
215 Mt CO2 in 2030. This is primarily due to the lower data centre electricity demand growth. 
In 2030, CO2 emissions in the High Efficiency Case are around 265 Mt CO2, nearly 20% lower 
than in the Base Case and roughly 55% of the CO2 emissions of the Lift-Off Case. 

2.6 Data centre interactions with the electricity grid 

2.6.1 Is there a risk of delays in connecting data centres to the grid?  

The global expansion of data centre capacity faces risks from grid connection delays, 
particularly in regions experiencing high concentrations of demand growth. Connection 
queues for new data centres can already be long in many key regions (Table 2.4). In recent 
years, several jurisdictions have placed moratoriums on new data centres while system 
operators process the backlog of connection requests and assess the capacity of the grid to 
meet additional connections. 
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Table 2.4 ⊳ Reported connection queues for new data centres in selected 
jurisdictions 

Jurisdiction Average time in queue  
United States 1-3 years  

North Virginia (United States) Up to 7 years  

California (United States) 3 years  

Germany Up to 7 years 

United Kingdom 5-7 years  

Netherlands Up to 10 years  

Kanto (Japan) More than 5 years 

Malaysia Under 3 years 

Queensland (Australia) More than 2 years 

Italy Under 3 years 

Spain 3-5 years 

Ireland In Dublin, paused until 2030  

Sources: IEA analysis based on energy.gov (United States), datacenterdynamics.com (Virginia, Netherlands, 
United Kingdom), electricalreview.co.uk (Germany), businesspost.ie (Ireland) and IEA survey results (Australia, 
Italy, Japan, Malaysia, Spain). 

Figure 2.25 ⊳ Transmission grid congestion costs and congestion volumes in 
selected markets, 2019-2023 

 
IEA. CC BY 4.0. 

Although congestion costs have come down due to decreasing natural gas prices, 
congestion volumes have continued to increase 

Notes: PJM is a regional transmission organisation on the east coast of the United States where congestion 
costs have trended higher than the national average in recent years. Congestion volumes for the United States 
and the Netherlands are not available. 

Sources: IEA analysis based on Grid Strategies Transmission Congestion Report (for United States and PJM) 
Grid Strategies (2024); German Federal Network Agency Monitoring Reports (German) Bundesnetzagentur 
(2025); National Energy System Operator, Daily Balancing Services Use of System (BSUoS) Cost Data and 
Constraint breakdown (Great Britain) NESO (n.d.); Tennet Annual Market Update 2023 (Netherlands) Tennet 
(2024).  
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Processing grid connection applications more quickly can help reduce waiting times. 
However, the problem is not solely bureaucratic: when power grids are congested, even 
priority applications cannot be approved. As seen in Figure 2.25, grid congestion is becoming 
worse in many countries. In Germany, the United States and Great Britain, the costs of 
managing congestion tripled between 2019 and 2022. In the Netherlands, the costs 
increased sixfold during the same period. In 2023, congestion costs went down because 
natural gas became cheaper. However, data from Germany and Great Britain reveal that 
physical grid congestion volumes have continued to increase year on year, highlighting the 
growing pressure on existing infrastructure.  

While grid congestion remains a significant challenge, it is not the only bottleneck hampering 
connection applications. Suboptimal connection and queue management processes 
contribute substantially to delays. For instance, Great Britain’s enormous connection queue 
contains numerous generation projects that are not progressing, prompting reforms to 
queue management. Additionally, system operators often lack sufficient resources, and the 
industry faces a shortage of skilled labour to deliver connections.  

Figure 2.26 ⊳ Change in transformer backlog, transformer price index and grid 
infrastructure lead times 

 
IEA. CC BY 4.0. 

The supply chain for electricity grid equipment is showing signs of strain,  
while transmission lines can take three to six years, or even longer, to build 

Mitigating grid congestion is challenged by the long lead times for new transmission projects. 
Building new transmission lines can take four to eight years in advanced economies and two 
to four years in emerging economies. This is not just a problem of permitting and 
construction; supply chains for grid equipment are also showing strain. Order backlogs for 
transformers grew by more than 30% in 2024, after two years of growth above 15%. 
Reflecting this, the price index for power transformers has increased by 1.5 times since 2020 
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(Figure 2.26). Chapter 5 looks in more detail at the security implications of supply chains for 
grid infrastructure. 

To understand the extent to which data centres might face connection delays, we examined 
the current congestion levels, grid policies and connection timelines. Based on a location-
specific analysis of upcoming data centres, we developed different scenarios for the possible 
number of data centres that may be delayed in connecting to the grid. Our analysis reveals 
that grid constraints could delay around 20% of the global data centre capacity planned for 
construction by 2030. This raises the question of what can be done to ensure that data 
centres come online in a timely way and that the electricity system does not create a critical 
bottleneck in this regard. 

Figure 2.27 ⊳ Global data centre capacity additions in the Base Case and 
capacity at risk of connection delay due to grid constraints, 
2025-2030 

 
IEA. CC BY 4.0. 

Around one-fifth of global data centre buildout in the Base Case 
 is at risk of delay due to grid bottlenecks 

2.6.2 Data centre locational flexibility 

One critical option to avoid grid constraints is to locate data centres in places with adequate 
grid and generation capacity. However, up until now, the dominant trend observed in the 
siting of data centres has been for them to cluster around markets and within geographies 
that have the requisite infrastructure, policy frameworks and workforces. As a result, 
gigawatt-scale clusters have emerged in specific regions in North America, Europe and 
Asia Pacific, in some cases creating issues for grid congestion. Concerns around power 
availability and increasing prices have led utilities and policy makers to consider temporary 
moratoriums on development, with notable examples implemented in cities like Amsterdam, 
Dublin, Santa Clara in California and Singapore. 
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While key siting parameters vary depending on the type of data centre, the general criteria 
are reliable power supplies, competitive electricity prices, sufficient connection capacity and 
access to land, in addition to access to the core broadband transmission network, skilled 
construction and operation workforces, as well as favourable policy frameworks. Data 
sovereignty is also an important consideration. The saturation of established data centre 
markets is shifting development towards new geographies. Siting considerations also differ 
between different kinds of data centre workloads. AI training and some kinds of inference 
are less sensitive to latency than traditional workloads, creating the potential to site data 
centres in locations with better access to grid and generation capacity but not necessarily 
near data centre users. 

However, the existing infrastructure, policy frameworks and talent pools that enabled the 
top markets to flourish have created momentum that continues to draw development and 
justify investment in the expansion of supporting infrastructure. As a result, more than 15% 
of data centre capacity under development globally falls within the top ten largest data 
centre markets by installed capacity, indicating the continued attractiveness of these hubs 
(Figure 2.28). Northern Virginia in particular illustrates how the convergence of these factors 
can lead to a boom in data centre development (Box 2.8). 

Figure 2.28 ⊳ Top ten data centre markets by installed capacity versus share 
of capacity under development, 2024  

 
IEA. CC BY 4.0. 

Based on the pipeline of announced projects, 15% of global data centre capacity under 
development is concentrated in the top 10 largest markets by installed capacity 

Notes: The Pearl River Delta encompasses the combined capacity of Guangzhou, Shenzhen and Hong Kong, 
China. The geographies considered represent the ten largest clusters in the world. Capacity under 
development is based on announced projects.  

Source: IEA analysis based on data from OMDIA (2025). 
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There is some evidence of a shift in data centre locations in the United States, although 
established hubs are attracting the majority of the capacity under development (Figure 2.29). 
Las Vegas in Nevada and El Paso in Texas provide examples of this emerging trend. Together, 
these locations have less than 500 MW of installed capacity today, but developers have 
announced large-scale developments in both locations due to their affordable land, cheap 
renewable power and tax incentives for data centre development. Nevertheless, half of the 
capacity under development in the United States is being built in markets with over 1 GW of 
installed capacity. 

Figure 2.29 ⊳ Data centre hubs by installed capacity and capacity under 
development in the continental United States, 2024 

 
IEA. CC BY 4.0. 

 Data centre development is expanding into new locations, but around 50% of the capacity 
under development in the United States is in markets with over 1 GW of installed capacity 

Notes: We define a data centre cluster as a group of data centres located within 100 kilometres of each other. 
The ten largest clusters have been named. Only future clusters greater than 500 MW are shown.  

Source: IEA analysis based on data from OMDIA (2025). 

Conversely, demand growth in saturated markets is being cited as justification for investment 
to expand generation and transmission capacity. Building this capacity quickly enough to 
meet the rapid growth projections poses a challenge. While electrical utilities have an 
obligation to meet the demand within their service territories, they are not required to 
provide service immediately upon request and may delay data centres’ grid connections until 
enough generation and transmission capacity is available. 

 

Omah
a

San 
Jose

Phoenix

Atlanta

Northern
Virginia

Chicag
o

Dallas

Columbus
Des Moines

Salt Lake City

Cluster IT 
load (GW)

12
4
<0.5

Existing clusters Future clusters based on current pipeline of announced projects



 

Chapter 2 | Energy for AI 99 

 

2 

Box 2.8 ⊳ Why does Northen Virginia dominate the data centre market? 

Loudoun and Prince William Counties in Northern Virginia, both within the 
Washington, DC metropolitan area, are together the world’s largest and fastest-growing 
data centre market by far, with over 5 GW of installed capacity and more than 3 GW 
under development. Installed capacity in the region – commonly referred to as “Data 
Centre Alley” – has grown more than 500% over the past ten years (Magnum Economics, 
2024).  

The region’s rise is a recent development that illustrates the fast-moving dynamics of the 
data centre market. The area only became the top market by installed capacity in 2016, 
and installed capacity proceeded to grow 20% annually (Magnum Economics, 2024). 
While the region’s central role in the early stages of the Internet’s development gave it a 
head start as a key data centre hub, its growth can largely be attributed to the region’s 
favourable policy environment, affordable power and highly skilled workforce. 

Northern Virginia’s selection as one of the four original Network Access Points during the 
commercialisation of the Internet in the 1990s led it to become a major intersection of 
the fibre optic backbone network. Following the loss of a USD 1 billion data centre project 
to neighbouring North Carolina in 2009, Virginia significantly expanded its tax exemption 
for the sale and use of data centre equipment, and the Virginia General Assembly recently 
extended these incentives to 2035. Streamlining the municipal government’s approval 
process in co-ordination with electric utilities’ proactive capacity planning has been 
instrumental to accommodating the sector’s growth (JLARC, 2024).  

Data centres’ long-term PPAs have supported the buildout of over 6 GW of solar power 
capacity in the state, and their growing demand has been cited as a key motivation 
behind the development of the Coastal Virginia Offshore Wind project, the largest 
offshore wind project in the United States. The high concentration of data centres has 
also supported the development of a highly skilled workforce with expertise in data 
centre construction and operation. With over 500 colleges and universities in the 
Mid-Atlantic region, including many of the world’s highest-ranked institutions, local 
collaborations have emerged between data centre operators and academic institutions 
to offer scholarships and align academic curricula with the evolving needs of data centre 
operations.  

While the jobs and tax revenue that data centres provide generally result in a positive 
net impact for local communities, they are large industrial facilities that can significantly 
affect their surroundings, and there is growing public opposition to further development 
stemming from concerns about declining property values due to their visual impact as 
well as the constant noise from cooling units and backup generators.  
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2.6.3 Data centre operational flexibility 

Data centres are emerging as major players in the energy system. In the United States, the 
country with the largest buildout of data centres, their share of system-wide peak electricity 
demand is set to increase from 6% today to 13% by 2030. As data centres take on a larger 
role in electricity systems, ensuring their smart integration becomes critical, both to enhance 
grid stability and support their continued deployment.  

In capacity-constrained regions, connection queues have led data centre operators to 
explore flexibility measures to shorten lead times for grid access. Grid congestion or 
insufficient generating capacity restricts the addition of new loads, but such constraints 
usually occur during a limited number of hours every year. In this context, electricity system 
flexibility will be critical to cater for growing demand and integrate increasingly variable 
sources of supply and demand. This section focuses on possible flexibility contributions from 
data centres within broader efforts to enhance electricity system flexibility from storage, 
other kinds of demand response, grids and dispatchable resources. 

Figure 2.30 ⊳ Data centre capacity additions to 2035 and feasible integration 
into the current electricity system under different flexibility cases 

 
IEA. CC BY 4.0. 

Current electricity systems can already integrate all data centre additions to 2035 if a mix 
of backup activation and workload management reduces grid demand 1% of the time 

Note: Capacity additions are considered feasible if their operation does not increase system peak demand, 
measured as the top 100 hours over ten years of weather conditions. Base Case additions include colocation, 
service provider and hyperscale data centres. 

Our analysis finds that if data centres are flexible for 0.1-1% of the time, there is enough 
room in current electricity systems to integrate all new data centre capacities to 2035 
(Figure 2.30). In the United States, up to 70 GW of new data centre capacity could be 
integrated within the current system if operators reduce grid demand for just 1% of the time 
– enough to cover all colocation, service provider and hyperscale additions in the Base Case. 
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In China, data centre additions would need to be flexible for 0.2% of the time to fit within 
the existing system capacity, the equivalent of 20 hours per year on average.3 Other studies 
find similar headroom in existing electricity systems, with flexibility rates below 1% (Nicholas 
Institute for Energy, Environment & Sustainability, 2025). 

These episodes of grid stress would be short, lasting between three to five hours on average. 
They align with existing peak periods, occurring for a few hours in the evening or during the 
day, usually prompted by regional heat or cold waves. Even during these episodes of stress 
on the electricity system, the grid can still supply some electricity to the data centre. In 80% 
of the hours of grid stress, more than half of the usual grid electricity supply to the data 
centre would still be available. In 50% of these hours, around four-fifths of the grid capacity 
would be available. In other words, even if the data centre is flexible for 1% of the hours of 
the year, only 0.3% of its total grid electricity consumption would need to be actively 
managed. 

Although needed for only a limited number of hours each year, providing this degree of 
flexibility would still require solutions not developed at scale today. These include higher 
utilisation of onsite generation, the installation of additional batteries and the management 
of computational workloads.  

In this context, there is a growing focus on understanding the potential for data centre 
flexibility. In 2024, the Electric Power Research Institute launched the DCFlex initiative to 
develop large-scale flexibility hubs, demonstrating innovative grid integration strategies for 
data centres. The initiative fosters strategic collaboration between utilities, data centre 
operators and policy makers. Earlier that year, the US Department of Energy published 
recommendations on powering data centres, advocating the development of a flexibility 
taxonomy and framework to explore financial incentives and policy changes that could drive 
more flexible operations. In the European Union, data centres fall under the scope of the 
Energy Performance of Buildings Directive, which mandates the installation of building 
automation and control systems. This requirement aims to enhance grid compatibility, 
enabling data centres to better respond to external grid signals and support flexibility 
markets. 

Several strategies exist to develop data centre flexibility (Table 2.5). While some of these 
imply additional investment, recent surveys indicate that most hyperscalers and data centre 
developers are willing to pay more if they can access grid capacity faster. 

Onsite batteries are a relevant flexibility option given the short duration of stress events. 
Batteries do not need to match the full capacity of the data centre; in most stress hours, 
more than half of the grid capacity remains available to the facility. The trade-off between 
battery cost and the facilitated grid connection could be improved if batteries are also 
operated for arbitrage in electricity markets. However, developers note that revenues from 

 
3  This analysis does not mean that grid reinforcement or new peak capacities are unnecessary to meet 
medium-term growth but rather shows how flexible loads can tap the existing potential and reduce connection 
times. 
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flexibility services remain modest compared to the overall operating costs (though faster grid 
access can help avoid high opportunity costs).  

Table 2.5 ⊳ Options for data centre flexibility 

Category Description Example 

Onsite 
batteries 

Balancing energy supply during peak 
demand and providing backup power 
to the data centre. Batteries can also 
contribute to grid stability. 

• Google installed onsite batteries 
(2.75 MW/5.5 MWh) at its data centre campus 
in Belgium. 

• A Microsoft data centre in Dublin employs 
batteries as part of its uninterruptible power 
supply system to provide backup power and 
assist in balancing grid frequency. 

Backup 
generation 

Running backup generators during grid 
stress events to reduce reliance on the 
grid. 

• Enchanted Rock is developing a natural gas 
plant for a Microsoft data centre in California. 

• American Electric Power secured an 
agreement to purchase up to 1 GW of Bloom 
Energy’s solid oxide fuel cells.* 

Cooling  Adjusting cooling load temporarily to 
optimise energy use, including using 
“cold batteries”, such as thermal 
storage. 

• CIV France in Lille utilises a 50 m³ ice storage 
system, equivalent to a 700 kW chiller, capable 
of operating for 30 minutes. 

• The Tidel Park facility in India employs ice-
based energy storage to manage its cooling 
load 

Workload 
temporal 
management 

Shifting computational tasks to times 
of lower grid demand or higher 
renewable generation availability. 

• Google deployed a “carbon-aware” 
scheduling system to shift workloads to times 
when renewable energy is abundant. 

Workload 
spatial 
management 

Moving computing tasks between 
geographically distributed data centres 
to optimise energy costs, availability 
and sustainability. 

• Google is piloting programmes to dynamically 
shift workloads to locations with cleaner 
energy sources. 

* In this use case, fuel cells are purchased as a power source to run as base load. Other fuel cell configurations 
could provide flexibility. 

Note: GW = gigawatt; kW = kilowatt; MW = megawatt; MWh = megawatt hour; m³ = cubic metre.  

Backup generation is typically already installed to cover grid outages. If utilised for flexibility 
purposes, runtimes would increase and data centres should prioritise low-emissions fuels, 
such as biofuels, natural or renewable gas, or low-emissions technologies such as fuel cells. 
However, this requires addressing complex challenges related to fuel availability and storage. 
While backup generators could offer a convenient flexibility solution, they are not designed 
to function as power plants and are usually subject to regulations regarding noise and air 
pollution. Currently, backup power is likely to provide only limited scope to increase data 
centre flexibility. 

Cooling accounts for between 10% and 30% of a data centre’s load. When paired with 
thermal storage that has a few hours of capacity, the data centre can reduce its real-time 
consumption for cooling and shift it to off-peak hours.  
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Additionally, workloads can be shifted over time and across data centres. Virtualisation 
allows scheduling based on grid conditions, prioritising times or locations with lower 
congestion. This flexibility is particularly beneficial for AI training and some kinds of AI 
inference that are not sensitive to latency. However, any such scheduling needs to balance 
the financial goal of maximising GPU utilisation rates (Box 2.9). This flexibility option does 
not apply equally across all data centres, with those hosting third-party applications having 
lower control over their workloads.  

Such workload management strategies are still in their infancy, but the industry does have 
some experience with analogous practices. For example, when they face low utilisation rates, 
Microsoft, Amazon and Google offer spare capacity at discounts of up to 90%, in exchange 
for the flexibility of interruptibility without notice. Shifting workloads across European data 
centres increases video call latency by only 10%, a negligible impact for most applications 
(Kelly, et al., 2016). Moreover, studies suggest that 30-50% of workloads are delay tolerant, 
a figure likely to rise with the uptake of AI training and inference (BNEF, 2021). 

Figure 2.31 ⊳ Technical daily flexibility potential from data centres,  
2030 and 2035 

 
IEA. CC BY 4.0. 

Data centres could provide up to 50 GW of flexible capacity by 2035 by combining 
spatial and temporal workload shifting with cooling load management 

Note: EMDE = emerging market and developing economies.  

In addition to providing peak shaving services, in the future, data centres may be able to 
provide more frequent flexibility services to support the integration of variable renewables, 
for example. Our analysis finds that around 50 GW of data centre capacity could have the 
potential for flexibility by 2035, assuming that 25% of accelerated workloads could be 
spatially or temporally shifted during daily demand peaks, and 10% of conventional 
workloads (Figure 2.31). One-third of the flexible capacity would come from the scheduling 
of workloads on accelerated servers. Cooling contributes to around 25 GW of flexibility, and 
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its share decreases over time as PUE ratios improve. In advanced economies in 2030, data 
centre flexibility potential is equivalent to the average charging load from the electric car 
fleet. Incentivising data centre flexibility can contribute to both system security and 
renewables integration. 

Policy makers need to develop innovative frameworks to incentivise flexibility. While the 
value of these strategies for data centre developers lies in accessing capacity more quickly, 
clear rules on engagement are necessary for participation in flexibility programmes. Further 
developing data centre flexibility requires stronger integration between grid operators and 
data centres, including early communication on upcoming stress events and proactive 
workload planning, particularly for tasks like AI training. Developing a playbook to incentivise 
more flexibility from data centres will require a better understanding of the economic, 
operational and contractual constraints that data centres face (Box 2.9).  

Box 2.9 ⊳ How much does flexibility cost for accelerated servers? 

AI workloads may not be as constrained by latency issues as traditional workloads, and 
some AI workloads can be scheduled in advance (for instance, AI training). However, they 
run on accelerated servers that are very capital intensive – investment costs can reach 
USD 30 000/kW, around ten times higher than an aluminium smelter and 50 times higher 
than an air conditioner. Data centre operators are therefore incentivised to maximise 
their server utilisation rate and run their servers at near-full capacity whenever possible. 
In this context, any curtailment of workloads carries an opportunity cost, as it would 
reduce overall utilisation. 

While the utilisation rate of accelerated servers is much higher than conventional servers, 
reaching around 90%, some capacity remains unused. Where spare capacity already 
exists, the headroom could present an opportunity to redistribute workloads across time 
and space at no additional opportunity cost. However, specifically overbuilding the 
capacity of accelerated servers in order to offer flexibility services would have high 
additional costs. Given the high cost of accelerated servers, we estimate that 
overbuilding data centre capacity and rescheduling workloads would entail an additional 
cost of approximately USD 700/MWh of energy consumption shifted (Figure 2.32). 

While this cost is prohibitive for daily electricity market arbitrage, it aligns with the 
economics of specific flexibility events in certain markets. For example, in Texas, 
electricity prices have consistently exceeded USD 700/MWh at some point in each of the 
past seven years, with more than 50 hours higher than this threshold in most years.  

A comparable investment in battery storage designed for similar flexibility events – 
operating for around 50 hours annually – would incur similar capital costs per unit of 
energy shifted. However, batteries typically cycle more frequently, for instance aligning 
with solar PV generation patterns. Assuming around 300 cycles per year, the effective 
cost per MWh falls below USD 100.  
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From a theoretical economic perspective, the feasibility of data centre operational 
flexibility depends on the actual opportunity cost of changing the utilisation patterns of 
extremely capital-intensive equipment. However, there are additional operational and 
contractual constraints, such as the need to reserve capacity for unpredictable but 
already contracted workloads. 

Figure 2.32 ⊳ Flexibility activation cost of selected technologies and 
electricity prices in Texas 

 
IEA. CC BY 4.0. 

Shifting accelerated server workloads can range from being cost-free to incurring  
high opportunity costs, comparable to flexibility events in certain markets 

Notes: The low and high opportunity costs of accelerated servers reflect, respectively, the spare capacity 
and the need for additional investment to create sufficient headroom. Battery low and high costs are 
computed, respectively, for 300 and 50 cycles a year. Electricity prices are for the Texas, Houston area. 

2.6.4 Optimising interactions with power system operators and planners  

Mitigating congestion and the long connection queues in some regions, as discussed 
previously, requires an understanding of the interactions between data centres and system 
operators. Data centres engage with system operators and planners throughout deployment 
and operation, starting with grid connection applications. Key considerations for grid 
operators include infrastructure upgrade cost recovery and allocation. Once operational, the 
interactions of data centres with the grid and their potential impacts on its stability become 
essential (Box 2.10). 

Grid connection applications and waiting queues 

Several solutions can reduce waiting times in grid connection queues, with clarifying the 
connection pipeline being a critical approach. Amid uncertainty on connection timelines, 
some data centres submit duplicate and speculative connection requests, artificially inflating 
queue lengths. The situation is compounded by the scarcity of grid capacity and lack of clear 
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connection timelines at a time when an increasing number of connection requests are being 
made by various other projects, such as renewables and batteries.  

In some regions, waiting periods for data centre connection have extended to a decade. 
While viable projects risk delays as a result, grid operators also risk overbuilding capacity for 
projects that may never materialise. Implementing stronger verification requirements, 
milestone-based progression systems and improved application tracking would help 
operators identify duplications. This approach would provide planners with a more accurate 
assessment of genuine demand, reducing pressure to build for theoretical peak loads that 
substantially exceed realistic needs. By requiring more substantive evidence of commitment, 
operators can establish a more efficient connection pipeline that properly aligns with actual 
growth patterns. A structured capacity commitment framework can achieve this by requiring 
long-term contracts between data centre projects and utilities, payments for a minimum 
percentage of contracted capacity and financial assurances. Contracts can include provisions 
for phased capacity ramp-ups, cost-recovery mechanisms and penalties for early termination 
or significant capacity reductions (American Electric Power, 2025). 

Transmission system operators can also alleviate the issue of large connection queues due 
to limited grid capacity by implementing incentive structures that encourage data centres to 
be built in areas without grid congestion. Transparency between grid operators and 
prospective customers plays a critical role in grid optimisation, such as providing maps to 
visualise the hosting capacity of transmission lines for large loads to identify the most 
favourable connection point. Optimising the location of data centres is described in 
section 2.6.2. 

System planners plan for grid investments according to comprehensive electricity load 
forecasts. In a situation where various data centre projects in the connection queue do not 
materialise due to speculative and duplicate applications, the planners may be at risk of 
overestimating demand and overbuilding capacity, incurring additional costs. The 
European Union Agency for the Cooperation of Energy Regulators reported in their 2024 
Monitoring Report (ACER, 2024), for a general case, that a 10% overestimation of demand 
leads to a 10% rise in total grid costs. At the same time, such costs could be highly location 
specific. If the predicted data centre load does not materialise, the costs and risks of these 
grid investments are often socialised across other ratepayers. The way that these costs are 
managed can have distributive impacts if costs are recuperated through increased utility bills 
for all customers in an area, including residents and small businesses, disproportionally 
affecting low-income households.  

Typically, when a transmission system operator connects a data centre to the grid, the data 
centre pays for the high-voltage line to make the connection. If infrastructure upgrades are 
needed within the broader grid to manage increased electricity demand, grid operators in 
Western Europe and the United States usually recover these costs through electricity tariffs 
applied to all customers (ENTSO-E, 2022; CRS, 2023). However, US regulators are shifting 
towards data centres bearing more of the upgrade costs directly (Utility Dive, 2024). Once a 
capacity request is accepted, that capacity is contractually reserved for the customer and 
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cannot be sold to new customers, even if it is unused (Mytton, et al., 2023). In areas with 
limited grid capacity, unused reserved power for data centres can restrict availability for 
other projects, contributing to longer connection waiting times. 

Box 2.10 ⊳ Potential technical impacts of data centres on grids during 
operation 

There have been reports that data centres may affect power quality on the grid. 
According to a survey conducted by the Electric Power Research Institute, utilities, 
primarily in North America, have experienced operational impacts from existing data 
centres (EPRI, 2024). Among the 23 respondents, the reported issues included thermal 
violations (22%), voltage violations (17%), harmonic concerns (9%), fault ride-through 
issues (9%), ramp rate issues (26%) and rapid variations causing forced oscillations (4%). 
Two utilities reported experiencing harmonic concerns, thermal violations, voltage 
violations and ramp rate issues, while two others reported both thermal violations and 
voltage violations. The phenomenon of data centres possibly being associated with 
harmonic distortion is also mentioned in various other sources (Bloomberg, 2024). 

In addition to the above-mentioned impacts, the potential for data centre load loss can 
be a challenge for power grid operators and planners, especially as data centre power 
capacities become larger. A power grid disturbance may prompt a data centre to switch 
to backup power (employing an uninterruptible power supply, for example), which 
removes a large amount of load from the grid. This may in turn cause changes in the grid 
voltage or frequency, which may be exacerbated if multiple data centres shift load 
simultaneously. This essentially initiates a short feedback loop whereby a grid 
disturbance prompts a reaction from a data centre, which in turn results in another grid 
disturbance. In an incident review, the North American Electric Reliability Corporation 
documented the impact of simultaneous data centre load loss following a fault on a 
transmission line in the Eastern Interconnection (NERC, 2025). 

The reconnection of large data centre loads also poses potential risks to system stability 
if not managed in a controlled manner. Balancing authorities and transmission system 
operators face significant challenges in maintaining system balance during these 
reconnections, as ramp rates for load are just as critical as those for generation. Reliability 
risks associated with the voltage ride-through characteristics of data centre loads are 
particularly important, though this is not unique to data centres and is also relevant for 
other large loads. 

AI workloads potentially present unique challenges for power grid operators due to their 
distinct characteristics at different operational stages: training and inference. Training 
demands high GPU utilisation, leading to sustained high power consumption with 
periodic surges and dips from data loading, preprocessing and checkpointing. Inference, 
while generally less power intensive, can cause rapid fluctuations in demand based on 
user interactions and external events. Installing onsite power-smoothing technologies is 
a relevant option to cope with these challenges (Li, et al., 2024).  
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Chapter 3 

AI for energy optimisation 
Applications in today’s energy system  

 

• The energy system is complex and evolving. It is becoming increasingly electrified, 
digitalised, connected and decentralised, with mounting cost pressures. These drivers 
have encouraged energy companies to deploy applications that utilise artificial 
intelligence (AI) to optimise systems, improve production, reduce costs, raise 
efficiency, cut emissions and enhance safety. In this chapter, we estimate the sector-
wide impacts of known AI applications on a range of optimisations in a Widespread 
Adoption Case, to explore the impacts of optimistic uptake of AI in the energy sector.  

• Oil and gas companies have been among the earliest adopters of new technologies to 
boost exploration and production. The number of supercomputers deployed in the 
sector has doubled since 2010 and total computing capacity has grown at almost 70% 
annually. In the Widespread Adoption Case, AI could reduce costs in oilfield 
development and operations, potentially improving the affordability of fuels, but it 
could also have broader ramifications, including increased emissions. 

• AI could also have a major impact in electricity systems owing to the complexity of 
supply, transmission and demand profiles. In the Widespread Adoption Case, the 
application of AI in power plant operations and maintenance yields potential cost 
savings of up to USD 110 billion annually by 2035 from avoided fuels and lower costs. 
AI also enables greater integration of renewable electricity into the grid.  

• The applications of AI in end-use sectors are varied but have significant potential. In 
industry, AI is being used to optimise production processes. In the Widespread 
Adoption Case, energy savings of around 8% could be achieved by 2035 in light 
industry, such as the manufacturing of electronics or machinery. AI in transport can 
enhance vehicle operation and management, which could cut energy consumption by 
up to 20%; it also has applications in reducing contrails and improving electric vehicle 
ranges. In buildings, the potential is limited by the rate of digitalisation, but there are 
compelling illustrations of impact, such as on efficiency and demand response. 

• Accurate weather forecasts and analysis of changing weather patterns in a warming 
world are essential to optimise the operation, planning and resilience of energy 
systems. AI has been improving the accuracy of weather forecasts and also reducing 
computational demand.  

• The adoption of such AI applications at a sector-wide level, however, is not a given. 
Various barriers are limiting the extent to which existing AI applications can be 
implemented, hindering the pace of change. These include unfavourable regulation, 
lack of access to data, inaccessibility, interoperability concerns, critical gaps in skills, 
the paucity of digital infrastructure and, in some cases, a general resistance to change. 
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3.1 Introduction  
Artificial intelligence (AI) is being deployed across various parts of the global energy system, 
where AI applications are suited to meeting a wide variety of objectives, including cutting 
costs, integrating a growing share of variable renewables, making systems more efficient, 
enhancing fuel supply, ensuring timely maintenance of infrastructure and reducing 
emissions. This chapter focuses on where AI is being used, and could be used, to optimise or 
accelerate the deployment of existing technologies and processes used in the energy system. 
Chapter 4 examines the use of AI in the innovation process for novel technologies.  

The energy system is highly complex, with multiple sources of energy following a web of 
flows and transformations to many end-uses. AI thrives on complexity like this, identifying 
patterns that can be leveraged to improve efficiencies. It is already having an impact on the 
energy sector but only in a limited, nascent way. Alongside greater electrification and 
digitalisation, AI is well placed to support a more resilient, affordable and sustainable energy 
future.  

Figure 3.1 ⊳ Energy supply, transformation and end-use, 2024 

 
IEA. CC BY 4.0. 

The global energy system is large and complex; fossil fuels still dominate primary energy 
supply, but their share is set to decline, while in end-uses the role of electricity is growing  

The energy system can be understood in three broad parts:  

 Primary energy supply includes the extraction or mining of energy resources. 

 Transformation and transmission refers to the processing of primary energy sources 
into appropriate forms, such as the generation of electricity or the refining of crude oil, 
together with their transportation to consumers. 
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 End-use consumption represents the final consumption of energy for a desired outcome 
by consumers, such as to run a vehicle, heat something in a factory or cool a building. 
We categorise the end-use sectors as industry, transport, buildings and other. 

Within each of these stages lie many applications, processes and techniques, each with its 
own set of challenges and opportunities for greater efficiency, security and sustainability. 

In this chapter, we explore AI applications for energy resources (oil and gas, and mineral 
mining), electricity generation networks, and the end-use sectors of industry, transport and 
buildings. The chapter also discusses AI applications in weather forecasting and climate 
science and adopts a novel approach to understanding the broader sector-wide impacts of 
AI towards a wide range of optimisations. This approach is discussed in Box 3.1.  

Box 3.1 ⊳ Methodology adopted to assess AI’s impact on the energy sector 

Many of the desired goals of AI’s application in the energy sector – such as cost 
reductions, enhanced reliability and improved resilience – are challenging to quantify at 
a broader sectoral level, beyond the confines of individual case studies. It is also 
challenging to predict the nature, adoption and impact of AI applications that might 
emerge in the future. 

Given these limitations, this chapter introduces a new Widespread Adoption Case, which 
explores the impact that known AI applications could have at the sectoral level by 2035, 
assuming the widespread adoption of the application or technology. This case hinges on 
three considerations: 

 The Widespread Adoption Case considers only existing AI-led interventions informed 
by real-world case studies that can be scaled to the sectoral level. 

 It assumes that many of the existing barriers to the sector-wide adoption of these 
AI-led interventions (such as limited data availability and a lack of interoperability 
standards) are overcome.  

 It stops short of considering the full theoretical potential of AI-led interventions, as 
it factors in certain insurmountable structural issues that would block their complete 
adoption. For example, we consider variations in adoption by region by factoring in 
the availability of enabling digital infrastructure.  

Importantly, it is not a given that the Widespread Adoption Case will be achieved. Existing 
barriers, such as constraints on access to data and a lack of digital infrastructure and skills 
(discussed further in section 3.7), will continue to prevent widespread adoption in the 
absence of regulatory changes and incentives. Therefore, the Widespread Adoption Case 
is an ambitious pathway for the uptake of existing AI applications.   

Note also that for the purpose of this analysis, we do not consider the impact of rebound 
effects. This issue is discussed further in Chapter 5, section 5.8. We also do not consider 
futuristic applications or interventions of AI in the sector, as their impacts are unknown.   
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3.2 The role of AI in the energy system 
The energy sector is in a constant state of flux. The energy system is currently seeing rapid 
change that creates new challenges and opportunities – many of which are well suited to AI 
applications. The key trends in the energy sector include: 

 Rising electrification: The overall share of total final energy consumption met by 
electricity has been steadily rising and is projected to accelerate.  

 Growing digitalisation: Energy systems are becoming more digitalised and integrated 
through the proliferation of connected devices and appliances, electric vehicles (EVs), 
smart meters, and smart sensors in industrial and commercial applications.  

 Rising complexity: The evolution of the energy system is resulting in greater complexity 
in supply, demand and energy flow patterns. On the supply side, electricity generation 
from variable sources, such as wind and solar, is growing fast. Generation is also 
becoming more distributed as smaller and more dispersed generation sources, such as 
rooftop solar, grow. On the consumption side, the number of connected appliances, 
vehicles and industrial facilities has been increasing. The result is a rise in the number of 
elements to manage both on the supply side and the demand side (Figure 3.2). 

 Pressure on costs: The last few years have been challenging for energy consumers 
around the world, with high energy prices putting significant pressure on the cost of 
living. With new entrants in the market on both the supply and end-use sides, the energy 
sector has also become more competitive. These factors have been placing pressure on 
corporate finances, encouraging companies to find new ways to increase efficiencies 
and reduce costs. 

In addition to these structural trends, the energy sector is subject to several important policy 
objectives. International targets aim to make the energy sector more efficient and 
sustainable. The energy sector is the largest source of greenhouse gas emissions, which cause 
climate change. Energy sector emissions have continued to rise, reaching 37.8 gigatonnes of 
carbon dioxide (Gt CO2) in 2024 – the hottest year on record (with 2023 the second hottest). 
Energy also needs to be reliable, affordable, secure and resilient. These imperatives have 
been cast into sharp focus by the energy market turmoil of recent years.  

AI can help advance progress on these critical challenges, but its successful deployment is 
likely to depend on several key criteria. Typically, for AI applications to be deployed, they 
require the availability of digital infrastructure and skills. Widespread use of sensors, 
analytics and control systems allows for the collection of the extensive datasets that AI 
needs, with increased scope for automation. Where advanced software systems are already 
in place, AI capabilities can be rapidly deployed – but this is often inconsistent with the slow 
turnover of capital equipment in the energy sector.  

The deployment of AI to solve energy challenges will also depend in part on the alignment of 
incentives. Uptake is likely to be strongest where the use of AI is in line with motives like 
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finding or harnessing more resources, reducing operational costs, cutting emissions, 
increasing resilience and boosting safety.  

Figure 3.2 ⊳ Shares of renewable power and electrification, and number of 
connected devices 

 
IEA. CC BY 4.0. 

The energy system is electrifying and becoming more complex as renewable sources 
grow; the number of connected devices is set to double from 2024 to 2030 

Notes: Wind and solar show the share of global power generation; electrification shows the share of total final 
energy consumption that comprises electricity; pathway based on a scenario guided by today’s policy settings. 
Connected devices shows the global stock of network-connected automation appliances.  

Source: IEA 4E EDNA Total Energy Model V2.0 for Connected Devices (right graph).  

The technological capabilities of AI continue to evolve. Currently, applications excel at 
learning from large and complex systems and applying their learnings to improve those 
systems (such as finding new resources) or enhance the control of them (such as daily 
operations). The system-wide, holistic aspect of these strengths suggests that AI applications 
will be most beneficial where implemented at scale, for example in interconnected power 
grids, large industrial facilities and commercial buildings. By contrast, for smaller, older assets 
with limited digital connections – such as many individual vehicles or residential homes – the 
role of AI may be more indirect or limited. 

The range of potential applications of AI in the energy sector as surveyed in this chapter is 
broad (Table 3.1). At the simplest level, these applications can be summarised into two types: 
those that help to identify resources and design, plan and build facilities, and those that help 
to optimise, refine and automate the operation of energy systems. These can be applicable 
across the broad sweep of the energy sector – from identifying and harnessing resources, 
including fossil fuels and critical minerals for energy technologies, to the generation, 
transmission and distribution of electrical power and the use of energy in the buildings, 
industry and transport sectors. Indeed, many applications of AI have the potential to be 
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deployed across multiple sectors: for example, AI-enhanced digital twins or predictive 
maintenance can help optimise the design and operation of oil and gas platforms, large 
power plants and major industrial facilities. AI can also enhance the capabilities and accuracy 
of climate and weather science, yielding further potential energy sector benefits. 

Table 3.1 ⊳ AI applications for energy optimisation and their applicability 
by sector 

Category Oil and 
gas 

Critical 
minerals Power Grids Industry Transport Buildings 

Resource 
management ● ● ● n.a. ● n.a. n.a. 

Applications related to the assessment, characterisation and extraction of resources, 
including fossil fuels, critical minerals, renewables (e.g. wind, solar, hydro and 
geothermal) and CCUS. 

Design and 
development ● ● ● ● ● ● ● 

Applications related to the design, planning, development and construction of assets 
to extract, harness, transform and transport resources, and assets that are end-users 
of energy. 

Operational 
optimisation ● ● ● ● ● ● ● 

Applications that enhance the efficiency and output of a process (or set of processes) 
related to the extraction, generation, transformation and transport of energy, or in 
end-use sectors. 

Automation and 
autonomy ● ● ● ● ● ● n.a. 

Applications that remove significant elements of human interaction within a system or 
process. 

Legend:  n.a. = not applicable;  ● = limited relevance;  ● = moderate relevance;  ● = highly applicable 

Note: CCUS = carbon capture, utilisation and storage. 

The rest of this chapter explores existing applications of AI across key parts of the energy 
system and their potential within each sector. 

3.3 AI for energy and minerals supply 
The extraction and supply of fossil fuels, nuclear fuel and the critical minerals needed for the 
components of energy equipment are the bedrock of the energy system. In this section, we 
explore the application of AI in optimising processes in the oil, gas and mineral extraction 
sectors.  

Digitalisation in the oil and gas sector has progressed rapidly in recent years. Oil and gas 
companies were among the earliest adopters of supercomputers to boost prospects for oil 
and natural gas exploration and reduce costs. Mining companies have increasingly developed 
digital technologies in recent years. The growth of AI opens up the potential to expand on 
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this, helping companies to explore and identify additional volumes of oil, gas and minerals 
and plan their development, reduce costs, improve safety and reduce environmental impacts 
(Figure 3.3). 

3.3.1 AI for oil and gas supply 

The oil and gas industry has been a technology pioneer for more than 150 years and is now 
a complex global industry that can overcome large geological and engineering challenges. 
Continued investment in oil and gas supply will remain an essential element of energy 
transitions, even if demand were to decline in line with climate goals. This is because natural 
declines in oil and gas production from existing sources of supply are generally much sharper 
than declines in demand (a detailed discussion on this is provided in the IEA report, The Oil 
and Gas Industry in Net Zero Transitions (IEA, 2023)). AI applications in oil and gas supply can 
therefore help play a role in energy transitions by ensuring that sufficient supplies are 
available at lower cost and with lower emissions (Table 3.2). 

Table 3.2 ⊳ Applications of AI in the oil and gas sector  

Application Description Impact on energy Example 

Resource management   

Exploration and 
development 

More reliable resource 
evaluation; reduced 
predrilling uncertainty 

● High: Reduced costs; 
faster development 
times 

Subsurface data 
processing; reservoir 
simulation 

Operational optimisation   

Operations and 
safety 

Optimising and 
automating production 
and processes; 
leveraging digitalised 
set-ups 

● High: Lower costs; 
greater reliability and 
resiliency through 
simplified supply 
chains; safer working 
conditions; fewer 
failures and 
environmental impacts 

Remote operations; 
predictive maintenance; 
regulatory compliance 

Emissions reduction Better identify and 
mitigate leaks, both 
existing and at-risk 

● High: More robust 
supply through 
improved leak 
detection, repair and 
prevention; long-term 
carbon storage 
certainty 

Leak detection and repair 
automation and 
prediction; sensor data 
integration 

In 2000, 11 supercomputers operated by oil and gas companies ranked among the world’s 
500 fastest. By 2024, this number had increased to 24, and total computing capacity has 
grown at almost 70% annually, outpacing the broader supercomputing industry. Companies 
including TotalEnergies, Petrobras and Saudi Aramco recently announced that they were 
developing new supercomputer capabilities for applications across exploration and 
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production, operations and safety, and emissions management; ENI’s latest supercomputer 
is currently the fifth fastest in the world. 

Oil and gas companies are also investing and partnering with AI experts to develop bespoke 
tools for their industry. For example, bp Ventures has made several investments in AI 
companies providing geological services since 2017, and ADNOC announced the completion 
of a 90-day trial of an AI agent based on a 70-billion-parameter large language model that it 
indicated improved the accuracy of seismic processing by 70%, along with other 
improvements (JPE, 2025). The Society of Petroleum Engineers, in collaboration with Aramco 
for financing, is delivering its catalogue of books and papers to a large language model, which 
will be commercially available in the near future. 

Exploration and development 

An essential part of exploring for and developing a new oil and gas deposit is characterising 
the subsurface by acquiring, processing and interpreting the results from seismic surveys. 
This is a data-intensive exercise – in the United Kingdom alone, the National Data Repository 
contains more than 130 terabytes (TB) of data from over 5 000 seismic surveys and other 
sources. The use of AI in seismic processing improves interpretation and image quality and 
makes it up to 90% better at classification (Araya-Polo, et al., 2017). After deciding to develop 
a project, companies need to decide where precisely to drill production wells, and this 
involves the collection of additional data from well logs and other images. The synthesis and 
interpretation of these datasets are increasingly being assisted by digital tools, such as 
machine learning, to help assess where the oil and gas may be present in sufficiently large 
accumulations. 

Successful operations rely on simulating the behaviour of rocks and fluids during oil and gas 
production. Reservoir simulation models now use 2 TB to 10 TB of data and require systems 
capable of 100 teraflops to 1 000 teraflops of processing speed. AI can significantly enhance 
the accuracy and speed of these processes. The use of deep learning algorithms has allowed 
faster loading and processing of large volumes of data from multiple sources, including well 
logs, seismic data and production information, which are entered into simulation models. 
Physics-informed machine learning has enhanced the ability to model more complex 
reservoir behaviour (Anson, 2024). For example, Chevron combines field data with physics-
based models and machine learning to predict well performance and production forecasts 
more accurately (JPT, 2022). This allows geological models of hydrocarbon reservoirs to be 
created in hours rather than months.  

Operations and safety  

Production forecasting is a critical component of the oil and gas industry, enabling companies 
to optimise operations and manage resources effectively. Traditional methods have been 
ever-present in the computational requirements of the industry, and they rely on many 
assumptions and oversimplifications. AI-driven forecasting methods have been evolving to 
overcome these challenges and improve results. Various AI and machine learning techniques 
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are being applied to production forecasting. For example, a hybrid AI model for oil 
production showed significant improvements in accuracy compared to traditional methods 
(Abdullayeva and Imamverdiyev, 2019), and a recent comparative analysis of machine 
learning techniques predicted oil production to a much higher degree of accuracy 
(Omotosho, 2024). Recently, ExxonMobil’s AI-powered demand forecasting model was 
reported to have reduced forecast errors by 25% (Kuang, et al., 2021). 

The use of AI can also significantly increase the potential for operations, monitoring and 
control to be carried out remotely. A typical oil platform operates tens of thousands of 
sensors (measuring aspects such as the temperature, pressure, and flow rates of produced 
liquids), which generate terabytes of data. Analysing and utilising these data streams from a 
centralised, remote location can increase efficiency and safety and reduce the costs of 
operations, which AI can assist in the management of (Figure 3.3). For example, cloud 
computing allows for the remote analysis of datasets, remote operational decisions and the 
creation of digital twins, such as Aker BP’s recent streamlining of operations with digital 
twins. 

Figure 3.3 ⊳ AI applications in oilfield operations  

 
IEA. CC BY 4.0. 

Many AI applications require input from sensors and the ability to process data remotely 
and quickly, supported by networks enabling data flows across geographies and systems 
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Assessing sector-wide impacts on costs 

It is unlikely that AI can reduce the costs of all oil and gas production as things stand: many 
facilities around the world were installed some time ago and do not necessarily have the 
appropriate infrastructure to accommodate AI (retrofitting these facilities would carry 
additional costs, making the application of AI less attractive). Nonetheless, we can illustrate 
the potential of AI to reduce costs for new facilities by considering an example of new 
deepwater offshore oil development. 

Producing oil from a new field involves labour, drilling, materials, and data processing and 
storage costs at each of the exploration, development and operations stages. A new offshore 
deepwater oil development today, with 25 million barrels of recoverable hydrocarbons, 
would cost around USD 10 per barrel in development and USD 15 per barrel during 
operations.  

Figure 3.4 ⊳ Cost of exploration, development and operations today and in 
the Widespread Adoption Case for a new oil deepwater project 

 
IEA. CC BY 4.0. 

In the Widespread Adoption Case, AI-led interventions could reduce the costs of finding, 
developing and operating a new deepwater offshore project by up to 10% 

Note: WAC = Widespread Adoption Case. 

We estimate that the widespread use of AI would mean drilling operations would become 
more efficient (e.g. fewer exploration wells would be required and production wells could be 
better targeted) (Figure 3.4). There would also be reduced labour needs (e.g. by allowing 
some operations to be carried out more remotely), and overall expenditure on materials 
would be lower (e.g. from more streamlined materials supply chains and less waste). Data 
processing and storage needs would increase substantially, but computing costs would 
become less expensive per unit of activity given economies of scale and the adoption of AI 
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processes. Overall, we estimate that in the Widespread Adoption Case (introduced in 
Box 3.1) deepwater costs could be reduced by up to 10%.  

The reduction in the cost of oil production – in deepwater areas or elsewhere – does not 
necessarily imply a proportional reduction in the price of fuels at the pump, as that is 
determined by wider market forces as well as duties and taxes. Nonetheless, a marginal 
reduction in the oil price could lead to increased oil use, which in turn would have broader 
implications for greenhouse gas emissions. Section 5.8 in Chapter 5 includes discussion and 
analysis of these impacts.  

Methane emissions reduction and carbon capture 

The production and use of oil, gas and coal currently results in around 140 million tonnes 
(Mt) of methane emissions per year, or 4.2 gigatonnes of carbon dioxide equivalent 
(Gt CO2-eq). This is around one-third of current anthropogenic methane emissions. A 
growing number of oil and gas companies have set methane targets, joining initiatives such 
as the Oil and Gas Methane Partnership 2.0 (OGMP 2.0), the Oil and Gas Climate Initiative 
(OGCI), and the Oil and Gas Decarbonization Charter (OGDC). 

Despite commitments by countries and companies around the world, flaring and methane 
emissions from fossil fuel operations remain near record levels (IEA, 2024a). AI is now being 
deployed to boost data processing techniques to detect and quantify total emissions, both 
from major leaks over large areas and smaller leaks at the facility level. For example, 
automated AI-driven methane emitter monitoring systems using two satellites (Sentinel-2 
and Landsat) were recently deployed at the International Methane Emissions Observatory’s 
Methane Alert and Response System.  

One particularly promising area is in rapidly detecting fugitive emissions, which comprise 
around 20% of methane emissions from oil and gas operations. These leaks can usually be 
repaired quickly once they are found, and the main challenge is finding them in an efficient 
and low-cost manner. Leak detection and repair programmes seek to do this, involving either 
equipping trained staff with optical gas imaging cameras or the use of airborne and satellite 
observations. AI can significantly improve the design and implementation of both of these 
approaches, including by reducing labour intensity and costs and improving the likelihood of 
finding leaks (Xia, Strayer and Ravikumar, 2024).  

For the oil and gas industry, deep learning approaches enabled by AI allow data processing 
to classify emissions more quickly and predict future emissions to prevent leaks altogether 
(Bo, Zhang, and Liu, 2024; Aljameel et al., 2024; Wang et al., 2020). For airborne and satellite 
observations, AI allows the large amounts of data collected to be processed much more 
quickly to derive leak size and persistence. The use of remote sensing equipment also opens 
the possibility of continuously monitoring production facilities.  

If the widespread adoption of AI could allow for continuous monitoring to take place at a far 
larger number of facilities and pipelines than is currently the case, this could help reduce 
emissions significantly, often at low cost. Based on data from the IEA’s Global Methane 
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Tracker (IEA, 2024a), we estimate that if continuous leak detection and repair were to be 
implemented at sites that can currently only be examined quarterly or less frequently, this 
could avoid nearly 2 Mt of methane emissions globally (equivalent to around 60 Mt CO2-eq). 
The costs of doing this would be around USD 1.6 per million British thermal units (MBtu), 
much lower than the average cost of USD 2.3 per MBtu of quarterly leak detection and repair 
programmes.1 

Another important possible deployment of AI is to improve the planning of carbon capture, 
utilisation and storage (CCUS) projects. Effective CCUS relies on subsurface knowledge and 
reservoir simulation. By enhancing reservoir models, additional computing power and AI can 
provide more certainty around the efficacy and costs of long-term CO2 storage. Several oil 
and gas operators and service providers have been partnering with AI companies to improve 
carbon management, including Cerebras, a semiconductor and AI company that has 
partnered with TotalEnergies to improve carbon storage simulations (Cerebras, 2022).  

3.3.2 AI for critical minerals supply  

In the mineral mining sector, machine learning and AI techniques already play a significant 
role in exploration, mine operations and extractive metallurgy (Table 3.3). Many AI 
techniques in mineral exploration parallel those in upstream oil and gas industries, where 
machine learning has long been used for subsurface data interpretation, reservoir simulation 
and reducing uncertainty (Box 3.2). AI can be used to process geophysical data to improve 
anomaly detection and orebody prediction, lowering costs and boosting resource confidence 
while reducing sampling needs. 

Once an ore deposit is identified, AI can contribute to improving productivity, safety and 
cost-efficiency in mining operations. Autonomous haulage systems allow for high-utilisation 
operations, reducing labour costs while increasing safety and fuel efficiency. Predictive 
maintenance algorithms analyse sensor data from heavy machinery to anticipate failures 
before they occur, helping to reduce unplanned downtime and extend equipment lifespans. 
AI is also being applied to ore tracking systems that monitor material movement from 
blasting through processing, ensuring that high-grade material is prioritised while minimising 
waste and environmental impacts. 

Refining and metallurgical processes can also benefit from AI, which is driving gains in 
efficiency and recovery rates. Machine learning algorithms analyse real-time plant data, such 
as temperature, pressure and flow rates, to fine-tune processing conditions dynamically. 
Sensor-based sorting systems use AI to distinguish valuable ore from waste, improving 
pre-concentration and reducing the volume of material. Computer vision technology is being 
applied in flotation circuits to optimise mineral separation and recovery rates. 

 

 
1 These costs do not include the potential savings that accrue in many instances because the additional 
methane gas that is captured can often be sold or used. 



 

Chapter 3 | AI for energy optimisation 121 

 

3 

Table 3.3 ⊳ Key applications of AI across the mining life cycle 

Application Description Impact on energy Example 

Resource management   

Exploration Enhanced resource 
discovery, assessment and 
characterisation 

● Low: Higher discovery 
success rates, lower costs, 
faster exploration 
timelines 

Geophysical data analysis, 
remote sensing, 
geochemical modelling, 
drill target optimisation  

Operational optimisation   

Mine 
operations 

Enhanced automation and 
assessment of operations to 
improve efficiencies 

● Low: Increased 
productivity and safety, 
reduced downtime and 
operational costs 

Predictive maintenance, 
fleet dispatch, ore grade 
control 

Processing and 
metallurgy 

Enhanced use of data from 
real-time processing 
operations to gain 
efficiencies 

● Medium: Higher recovery 
rates, lower energy and 
reagent consumption, 
improved process 
efficiency 

Process automation, 
sensor-based sorting, 
machine vision in 
flotation, metallurgical 
modelling 

Automation and autonomy   

Mine 
operations 

Removal of human 
operation of haulage 
vehicles 

● Medium: Increased 
productivity and safety, 
reduced downtime and 
operational costs, higher 
fuel efficiency 

Autonomous haulage 

Box 3.2 ⊳ Reducing uncertainty in mineral exploration with AI 

The Mingomba copper deposit in Zambia ranks among the largest undeveloped copper 
deposits in the world. It is estimated to contain about 250 million metric tonnes of copper 
at a grade of 3.6%, around seven times the grade of the average copper mine. (Lobito 
Corridor Investment Promotion Authority, 2024) 

It was first discovered in the 1970s and planned as an extension to the Lubambe mine, 
located in the heart of the Zambian Copperbelt. Commercial copper mining in the region 
has been ongoing for more than a century, relying on its large, high-grade orebodies. 
Despite the resource potential indicated by the deposit’s proximity to existing reserves 
and commercial operations, the depth of the orebody – more than a kilometre 
underground – presented challenges in resource characterisation and recovery. 

In 2022, KoBold Metals, a company specialising in AI-driven mineral exploration, acquired 
a stake in the Mingomba project and began applying its machine-learning and data-driven 
geoscience methodologies. In 2024, KoBold validated the conclusions of a 2020 concept 
study commissioned by Lubambe. Unlike conventional greenfield exploration, Mingomba 
provided a rich legacy dataset – including seismic surveys and historic drill core logs – 
which KoBold used to train its AI models. 

Rather than relying on costly, high-density drilling, the AI model focused surveying efforts 
on areas that would yield the most useful data. This iterative process, comprising data 
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acquisition, model refinement and expert decision making, allowed geologists to improve 
resource estimates while minimising costs and environmental impact. 

This illustrates the ongoing technological advances in mineral exploration in which AI and 
machine learning are augmenting geologists’ decision making. As high-grade, near-
surface deposits are depleted, expanding and rapidly assessing the search space for 
mineral resources is essential for secure, affordable mineral supplies.  

AI models trained on multimodal datasets – including geophysical, hyperspectral and 
drilling data – can detect patterns imperceptible to traditional methods, improving the 
likelihood of success of both greenfield exploration and the reassessment of complex 
deposits. Most models are currently trained on specific geologies based on the available 
data, making the identification of significant resources elsewhere in the world beyond 
their capability. 

3.4 AI for the electricity sector 

3.4.1 AI applications for power system operations 

The electricity sector is on the brink of a significant transformation, facilitated by the rapid 
advancements in AI. Over the next decade, AI has the potential to play a pivotal role in the 
way power is generated, distributed and consumed, leading to increased efficiency, 
sustainability and resilience.  

The power system has become increasingly complex in many countries, as the production of 
electrical power has shifted from large, centralised power plants to a multitude of small, 
distributed sources (Figure 3.5). In parallel, a digitalisation revolution is producing large pools 
of data, which in turn can be used to manage the complexity of the whole system. The 
integration of AI into the electricity sector could bring significant system-wide benefits with 
its ability to process huge amounts of data and provide optimisations based on trained 
models rather than predetermined rules. AI has the potential to play a critical role in 
managing the complexities of integrating renewable energy sources into the grid. AI-
enhanced control systems could allow plants and facilities to operate at their rated 
performance for longer periods, improving efficiency while minimising downtime. 

Managing the electricity system through traditional methods and rules – for example, direct 
communication with power plants to manage operations or the tiered response approach to 
frequency control – may still work in increasingly complex environments but would not take 
advantage of the potential of new technologies. As the number of sources of power system 
flexibility increases substantially, either in the form of energy storage or demand-side 
response, operational approaches need to be upgraded. Further examples are the fast-acting 
converters that are part of any solar photovoltaic (PV) array or wind turbine, and battery 
storage installations, which could be called on to a greater degree with more automated 
systems. 
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Figure 3.5 ⊳ AI applications in electricity generation and transmission 

 
IEA. CC BY 4.0. 

Power systems are increasingly complex, with more distributed sources and a wider set of 
flexibility sources, requiring more advanced operation methods that would benefit from AI 

An important AI application at the system level is to enhance the forecasting of electricity 
demand and supply from variable renewables in order to optimise the use of power sector 
assets, including dispatchable power plants, energy storage and demand-side flexibility, and 
ultimately improve the overall efficiency of the power system. AI is already applied at the 
system level. For example, from the IEA Survey (see section 3.4.3) RTE in France and Elia in 
Belgium apply AI for real-time forecasting to assess system imbalances. The Nostradamus AI 
tool from Hitachi Energy provides accessible load, market price and renewable forecasts 
(Hitachi Energy, 2024). IBM Research established the GridFM working group to enhance 
power grid operations and planning with AI, focusing on resilience, efficiency and renewables 
integration using pre-trained optimal power flow models and multimodal data for outage 
prediction and load forecasting (IBM, 2024). 

Advanced AI-driven weather and demand prediction models allow grid operators to 
anticipate fluctuations more accurately, minimising the curtailment of wind and solar PV in 
conjunction with demand shifting or storage. AI can significantly improve the accuracy of 

IE
A.

 C
C

 B
Y 

4.
0



 

124 International Energy Agency | Energy and AI 

 

weather forecasts by analysing vast amounts of historical and real-time meteorological data, 
which can also improve the resilience of energy systems (see section 3.6). For example, 
DeepMind’s wind power forecast was found to increase the financial value of wind energy 
by as much as 20% (Google DeepMind, 2019).  

Machine learning models can predict local weather conditions, such as wind speeds and solar 
radiation, with high precision. These accurate predictions help anticipate the output of wind 
and solar farms at specific locations. For example, in the United Kingdom, AI improved the 
National Grid ESO solar forecast significantly for up to 8 hours ahead (Fulton, et al., 2024), 
and KEPCO in Korea uses AI for wind speed prediction and to simulate real-time weather 
impacts on generation capabilities. Additionally, by optimising the integration of renewable 
energy sources, the reliance on fossil fuel-based power generation can be reduced. For 
example, reducing global average curtailment by a single percentage point in 2035 could cut 
demand by about 28 million tonnes of coal equivalent (Mtce) of coal and 14 billion cubic 
metres (bcm) of natural gas, avoiding approximately 120 Mt of CO2 emissions. 

The above applications of AI at the power system level can also enhance the efficiency of 
fossil fuel power plants. Thermal power plants, traditionally designed for continuous 
operation with high capacity factors, are experiencing a major shift in their operations. With 
increasing shares of wind and solar PV in many systems, the role of thermal power plants is 
evolving, with more emphasis on flexibility, which reduces their average efficiency. Such 
efficiency reductions can be minimised where the application of AI to power system 
operations allows improved scheduling so that flexibility-enabled thermal power plants can 
operate at higher utilisation rates. A single percentage point improvement in efficiency could 
reduce the fuel consumption and emissions of a coal-fired plant by 2.5% and a natural gas-
fired plant by 2%. These measures not only optimise resource utilisation but also lower 
system costs and enhance grid stability. 

3.4.2 AI applications for power plants and storage 

The synergy between AI and digitalisation has the potential to lead to significant gains in the 
operation of power plants and storage. Potential applications of AI in power generation with 
significant impacts include faster research, process optimisation, dispatch prediction and 
service interventions (Table 3.4). Additionally, AI could enable better management of energy 
storage systems, ensuring that renewable power is effectively stored and released into the 
grid when needed. 

AI-driven data analytics could improve planning, project design and real-time operational 
decisions, resulting in reduced fuel consumption, lower CO2 emissions and extended asset 
lifetimes. Below are several examples of AI use cases in power plants and storage at different 
project stages. 

 

 

https://blog.google/technology/ai/machine-learning-can-boost-value-wind-energy/#:%7E:text=energy%20by%20roughly-,20,-percent%2C%20compared%20to
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Table 3.4 ⊳ Potential applications of AI in power generation 

Application Description Impact on energy Example 

Design and development   

Planning and 
design 

Selecting the optimal 
equipment, siting and 
infrastructure planning for 
power plants and storage 
projects 

● Medium: Maximise asset 
performance, lifetime 
operation and returns on 
investment 

AI used to optimise the 
design of renewable 
projects such as wind and 
solar PV farms  

Process 
optimisation 

Processes necessary to 
deploy generation 
installations involve 
repetitive tasks 

● Low: Productivity 
increases, generally 
resulting in cost savings  

Generative AI analyses 
tender documents and 
supports the creation of 
proposals 

Operational optimisation   

Dispatch 
prediction 

Operators need to decide 
when to activate their 
assets 

● Medium: Increases 
efficiency of the market, 
enables players to 
improve their business 
models 

Market models representing 
the merit order system use 
AI to predict day-ahead 
market prices 

Anomaly 
detection 

Operational data need to 
be analysed both online 
and offline for unusual 
patterns 

● Medium: Relieves 
human experts from 
routine tasks, increases 
productivity 

AI is trained with normal 
signal patterns, as well as 
patterns from irregular 
events, and raises the alarm 
upon detecting irregularities 

Service 
interventions 

 

 

Service moving from 
predetermined inspection 
and maintenance 
schedules to more 
flexibles ones 

● High: Potential to reduce 
number of inspections 
during lifetime and/or 
extend lifetime of 
equipment 

AI uses operational data 
from heat recovery steam 
generators to predict wear 
and corrosion status, thus 
reducing on-site inspection 
needs 

Autonomous 
operation 

Plants able to be 
maintained and operated 
with reduced staff 

● High: Several 
intermediate stages exist 
to achieve fully 
autonomous operation; 
cost benefits increase 
with each step 

AI uses sensor data, expert 
knowledge and even data 
collected by maintenance 
robots or drones to ensure 
safe and reliable remote or 
autonomous operation 

Improving planning and design choices 

At the earliest stage of a power plant or storage project, AI can be applied to make better 
choices concerning the planning and designs. For renewable energy projects, AI is being 
applied to design solar and wind projects, including the selection of primary equipment (solar 
panels or wind turbines), the siting of the equipment (orientation of panels, available areas 
and spacing of turbines) and the planning of supporting infrastructure, all to optimise 
performance and returns on investment. Examples of AI tools to optimise renewable project 
designs include the Wind Plant Graph Neural Network from the US National Renewable 
Energy Laboratory, the Sedar project by Iberdrola with the Barcelona Supercomputing 
Centre, Aurora Solar and the Google Maps Platform Solar API. For nuclear energy, AI is being 
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developed to improve reactor design and performance, benefiting from previous designs and 
experience, with the aim of reducing construction costs, extending operating lives, raising 
operational flexibility and enhancing safety. For battery storage, AI is being applied to 
optimise charging cycles and defect monitoring in order to extend asset lifetimes, reduce 
costs and maximise value.  

The application of AI in the planning phase of thermal power plants relies on the digital data 
created during the operation of existing units. The typical number of sensors for a gas-fired 
power plant is more than 6 000. Depending on the sensor type, time resolution ranges from 
milliseconds to hours, and the amount of data points produced can be anywhere from a few 
thousand to several million per year for each sensor.  

While rule-based algorithms can already extract much useful information from the pool of 
data produced by a power plant, using the data to train AI models adds many more potential 
use cases. Digital twins, which are virtual replicas of physical assets or processes, can benefit 
from AI’s ability to make up for deficiencies in the representation, for example insufficient 
numbers of sensors, straying material properties or manufacturing tolerances. 

Streamlining permitting and construction 

In the next phase of a project, AI can also be applied to accelerate permitting and licensing 
processes, which often span several years and require thousands of pages of documents to 
be drafted by applicants and processed by regulators. Lengthy permitting times have been 
flagged as a concern for countries seeking to reach their policy ambitions, including for 
renewables. Recent efforts have been made to shorten timelines, including a rule in the 
European Union targeting a maximum limit of two years for wind power projects. AI tools 
can benefit from previous permitting processes and environmental data, enabling faster 
processes and better outcomes. For example, in the United States, a project is underway to 
train AI tools with information from over 28 000 documents related to close to 
3 000 environmental impact statements (PNNL, 2024). 

During the construction phase of power plants and storage, AI can be applied to streamline 
complex logistics and project planning, reducing construction times and costs. For example, 
wind turbine logistics are complex as a result of their size – a single blade can exceed 
100 metres even for onshore projects. An AI machine learning tool from GE Vernova is 
targeting a 10% reduction in the logistical cost of installing wind turbines. Broader gains in 
technology supply chains would reduce construction times for a wide range of power plants 
and storage assets (GE Vernova, 2022).   

Improving operational decisions 

Once built, AI can be applied to improve the operation and maintenance of power plants and 
storage assets, offering the potential to increase uptime, improve efficiencies, reduce 
maintenance and fuel costs and even reduce stress on the asset. Predictive and condition-
based maintenance strategies can potentially yield benefits in all these areas. These 
approaches rely on AI models trained with historic and asset-specific operational data. AI can 
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also facilitate the development of digital twins, such as those available from Siemens Energy, 
which have the potential to enable real-time monitoring and simulation of power sector 
assets, allowing for proactive maintenance and performance optimisation. AI could also be 
applied to key component inspections, with AI models trained to support visual screening by 
human experts.  

AI can also be applied to optimise the operation of individual assets by using local weather 
and wholesale market predictions for demand and prices. Two examples of improved local 
weather forecasting are the MeteoFlow project by Iberdrola to optimise renewable energy 
output, applying big data, machine learning and AI (Iberdrola, 2016), and the Myst AI tool 
used by Enel to rapidly create highly accurate forecasts of renewable output (Enel, 2022). AI 
can also be used to predict hydropower inflow and generation, both in the short term 
(Sapitang, et al., 2020) and in the longer term, taking into account the effects of climate 
change (Salomon, et al., 2022). In the current energy landscape, thermal power plants are 
increasingly being utilised for load-following operations. This means that instead of operating 
at a constant output, these plants adjust their power generation to match the electricity 
demand. During periods of high renewable energy output, thermal plants reduce their 
output, and conversely, they ramp up production when renewable sources are insufficient 
to meet demand. This flexibility is crucial for maintaining grid stability and ensuring a reliable 
supply of electricity. Improved accuracy of predictions over minutes, hours, days and months 
could enable more optimal use of thermal and storage assets, enabling more continuous and 
efficient operations (Hanley and McGuire, 2023). 

Expanding capabilities of power plants 

Beyond the normal operation of power plants, AI has the potential to expand their accessible 
technical capabilities. Regulations governing the power sector and power plants have been 
developed over decades, including detailed codes and standards related to their technical 
capabilities. One example of this is the power factor requirement for an electric generator. 
Frequently, the generator rating (in mega-volt amperes) is required to be up to 25% above 
the driving turbine’s capability (in megawatts). While there are scenarios that do require a 
certain margin, such as grid disturbances, most assets’ mega-volt ampere utilisation is only a 
few percentage points above the turbine rating. AI tools could be applied to assess the real-
time requirements in the grid surroundings and enable a reduction in the margin in many 
individual cases. This would allow smaller generators to be specified at lower cost.  

Power plants are also governed by customary requirements in tender documents that 
sometimes inhibit technical progress, like the application of AI. To unlock the extent of these 
opportunities, codes, standards and tender documents should be reviewed and adapted 
where appropriate. 

Potential impacts of widespread adoption of AI in power generation 

The widespread adoption of known AI applications in power plant operations and 
maintenance can yield substantial benefits. In the Widespread Adoption Case (see Box 3.1 
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for the methodology), AI has the potential to reduce operations and maintenance (O&M) 
costs by up to 10%, resulting in annual savings of approximately USD 40 billion (Figure 3.6). 
This is based on the assumption that 80% of costs are fixed O&M and 20% are variable O&M, 
with savings of 5% in fixed O&M through process automation and 10% in variable O&M 
through operation optimisation. 

Figure 3.6 ⊳ Illustrative potential annual cost savings in the Widespread 
Adoption Case in power plant operations worldwide, 2025-2035 

 
IEA. CC BY 4.0. 

The integration of today’s AI applications in power plant operations and maintenance  
can yield potential cost savings of up to USD 110 billion annually worldwide to 2035 

Note: MER = market exchange rate. 

Efficiency improvements in fossil fuel power generation also play a crucial role. By optimising 
plant O&M schedules, average efficiency could increase by 3%, leading to annual savings of 
200 Mtce of coal and 95 bcm of gas in the Widespread Adoption Case, while preventing an 
additional 850 Mt of CO2 emissions. Enhancing efficiency to achieve 6-8% more electricity 
output per unit of fuel could be translated into fuel savings of around USD 40 billion per year, 
with 65% of the total savings coming from coal-fired power generation. 

Extending the operational lifetime of power plants through AI could lead to considerable cost 
savings due to lower investment requirements. By prolonging the service life of all power 
plants by four years, the retirement of 435 gigawatts (GW) of capacity could be postponed 
by 2035, including 120 GW of wind and 50 GW of solar PV plants. This also includes the 
option of delaying the retirement of 170 GW of coal-fired plants and 60 GW of gas-fired 
plants, which could help avoid locking in new assets for decades. Consequently, up to 7% of 
cumulative investment in new power plants could be deferred during this period, amounting 
to USD 760 billion. This would save up to USD 35 billion annually in capital recovery 
payments (annual payments to recover the initial investment).  
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3.4.3 AI for electricity networks  

Electricity grids are essential infrastructure that form the backbone of modern power 
systems, delivering electricity to homes, businesses and industries. These networks are 
evolving rapidly from traditional centralised systems into complex, digitalised networks that 
must safely accommodate variable renewable energy sources and distributed resources. 
Because these systems cannot tolerate failures – as interruptions can have widespread 
impacts on essential services – grid optimisation is increasingly important to improve 
efficiency and performance across operational parameters. The increasing complexity of 
grids demands significant investment in modernisation, expansion and digitalisation to 
prevent them from becoming bottlenecks to secure energy transitions. This includes 
deploying new transformers, power lines and pylons across both advanced economies and 
emerging market and developing economies to meet growing demand, replace ageing 
infrastructure and enhance resilience against extreme weather events and other disruptions. 

Table 3.5 ⊳ Potential applications of AI in the real-time operations of 
electricity networks 

Application Description Impact on energy Example 

Operational optimisation   

Dynamic 
operating 
envelope 

Framework that sets real-
time, adjustable operating 
limits for grid-connected 
devices based on current 
network conditions to 
maximise available capacity 
while maintaining security; 
includes dynamic security 
assessment 

● High: Reduces congestion 
costs, increases renewable 
integration, defers grid 
reinforcement investment 
and optimises existing 
infrastructure utilisation 
without breaching security 
limits 

A grid operator increases 
line capacity by 15-30% 
during cooler weather 
conditions, safely 
accommodating 
additional renewable 
generation 

Fault 
detection and 
localisation 

Uses sensors and AI 
algorithms to quickly 
identify and pinpoint grid 
faults, reducing outage 
duration and improving 
response times 

● High: Reduces outage 
duration by 30-50%, 
improves system reliability 
metrics (SAIDI/SAIFI), 
lowers restoration costs 
and enhances customer 
satisfaction 

A distribution system 
operator detects a fault 
within seconds and 
precisely locates it within 
a 100-metre section, 
immediately dispatching 
repair crews to the exact 
location 

State 
estimation and 
automation 

Employs advanced 
algorithms to monitor 
distribution grid conditions 
in real time by inferring from 
measured points the 
electrical parameters at 
points without direct 
observability, enabling 
automated responses to 
maintain stability and 
optimise performance 

● High: Improves grid 
stability during variable 
renewable generation, 
reduces operating margins, 
enables higher distributed 
renewables integration and 
decreases manual 
intervention requirements 

An AI system continuously 
monitors voltage levels 
across the distribution 
network, automatically 
adjusting transformer tap 
settings to maintain 
optimal voltage profiles 

Note: SAIDI = system average interruption duration index; SAIFI = system average interruption frequency 
index. 
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While AI delivers value across grid management, its most significant impact comes from 
short-term operational applications (Table 3.5). The increasing complexity of power systems 
demands advanced tools for two distinct challenges. First is ensuring human safety: real-time 
grid operations must prioritise human safety and reliable electricity supply above all else. 
Second is system optimisation: AI can help optimise the available capacity in the system – 
balancing generation, consumption and grid utilisation more efficiently in an increasingly 
variable environment. This approach delivers faster and potentially more cost-effective 
improvements without requiring new infrastructure investment. For long-term planning, AI 
helps navigate the substantial uncertainties in future electricity demand driven by 
widespread electrification, as well as the unpredictable evolution of power system 
technologies – from sophisticated grid solutions to emerging generation options – all while 
accounting for interactions with broader energy system developments. 

Current AI adoption patterns in electricity networks 

Despite higher potential benefits, short-term applications face greater resistance to AI 
adoption among grid operators. Our survey of grid operators from 13 countries, comprising 
Australia, Belgium, the People’s Republic of China, Czechia, France, Germany, Ireland, Italy, 
Japan, Korea, Malaysia, the Netherlands and the United States, shows that only 23% use AI 
for real-time operations, while 54% have implemented AI for grid development planning and 
nearly 70% for asset maintenance and operation planning. AI applications in real-time 
operations focus on determining system imbalances, and load and generation forecasting, 
especially for renewables. Some operators expressed concerns about using AI in real-time 
operations, avoiding AI applications or limiting them to auxiliary assistants that advise 
operators in decision making. Operators use AI in asset operation planning to define and 
calibrate maintenance policies and activity planning, such as optimised scheduling and 
operation mode.  

While real-time validation mechanisms for AI-driven grid decisions remain an emerging field 
with few established benchmarks or industry standards, there is greater receptivity to AI 
applications with extended decision time frames. Post-mortem analysis – the detailed 
investigation of power system failures and incidents to determine the root causes – allows 
for unhurried validation of AI-generated insights without operational time pressure. For 
example, 8% of respondents use generative AI for fault diagnosis.  

Similarly, long-term scenario planning leverages AI’s capacity to process datasets and identify 
patterns within complex energy system interactions across different time frames. Tapestry’s 
Grid Planning Tool (Google X, 2024) enables large-scale, long-term grid simulations with high 
resolution, allowing grid planners to efficiently plan and reliably integrate renewable energy 
sources.  

By using AI to run simulations, the power system operator in Chile can explore a wider range 
of scenarios and make informed decisions about grid investments and operations. AI 
effectively balances multiple competing objectives and criteria, a critical advantage in 
complex grid planning. From the survey, examples of Transmission System Operators (TSOs) 
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applying AI for planning include KEPCO in Korea, which uses AI for optimal energy planning 
and site selection, Elia in Belgium utilising graphics processing unit-based load flow 
computations for network planning and EirGrid in Ireland applying AI to network planning 
for efficient infrastructure investment decisions. 

Figure 3.7 ⊳ Utilities using AI applications by category, 2024 

 
IEA. CC BY 4.0. 

AI’s support for electricity grids today focuses on optimising asset operation planning  
and maintenance, including fault prevention by automated image recognition 

In asset management, AI helps optimise maintenance schedules and equipment replacement 
based on condition monitoring, with decisions that can be methodically evaluated and 
refined. The survey results show that around 30% of respondents use image recognition AI 
to monitor and manage assets, including signal processing and the tracking of vegetation 
growth. For example, the State Grid Corporation of China (State Grid) applies reinforcement 
learning and AI to optimise scheduling and operation modes – advanced AI techniques that 
help manage complex trade-offs in grid asset operations. Among the TSOs, TEPCO in Japan, 
RTE in France, State Grid and the Elia Group all reported successful implementation of AI 
image analysis for asset monitoring and management, particularly for vegetation 
management. Hitachi Energy is one provider of such solutions (Hitachi Energy, n.d.). EirGrid 
is also exploring machine learning for predictive maintenance. Such applications could 
extend the operational lifespans of networks. For example, just two additional years in 
lifespan would defer the construction of over 3 000 km of new lines by 2035, reducing 
cumulative grid investment by USD 300 billion and saving around USD 15 billion annually in 
capital recovery payments. 

However, adoption remains limited in system-critical operations despite their higher 
potential value. While some TSOs employ “auxiliary AI assistants” for decision support, real-
time operations continue to rely on conventional tools and human expertise, with hesitancy 
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to implement AI solutions in time-sensitive scenarios, even where clear benefits have been 
demonstrated. As a result, some of AI’s most valuable potential contributions remain 
underutilised in daily grid operations. Such caution is understandable for critical 
infrastructure. TSOs prioritise human oversight while gradually leveraging AI capabilities, 
maintaining essential reliability standards for the power system. Nevertheless, a balance is 
needed to preserve the necessary safeguards for critical infrastructure while accelerating 
adoption where appropriate to benefit from the efficiency gains and technological 
advancements that more comprehensive AI integration could deliver.   

Implementation challenges and the way forward for AI in grids 

The barriers to AI adoption in grid operations are common to those faced by all parts of the 
energy sector, as further discussed in section 3.7. Specific to grid operations, the barriers are 
predominantly institutional rather than technical, reflecting broader challenges in deploying 
new technologies rather than AI specifically. While some TSOs have embraced dynamic line 
rating (DLR) solutions, the majority of grid operators lag behind, despite DLR’s proven ability 
to safely increase transmission capacity with clear technical benefits (see Box 3.3). This 
illustrates a potential pattern of resistance to innovation stemming from multiple factors: a 
cautious operational culture that favours maintaining current reliable practices over 
adopting new approaches, challenges faced in developing internal expertise that can bridge 
traditional power system knowledge and emerging technological capabilities, and a shortage 
of AI-skilled talent coupled with insufficient knowledge sharing.  

Beyond institutional barriers, there are significant technical challenges with AI itself. In 
particular, AI systems often disregard physical laws and constraints, whereas electric utilities 
must adhere to these laws. The development of more mature and physically constrained AI 
solutions remains an area requiring improvement.  

Regulatory frameworks further compound these challenges as they lack incentives for grid 
optimisation and struggle to evaluate novel technologies. Traditional regulatory models 
inadequately assess and manage risks from new approaches, while the transition from pilot 
projects to standard practice lacks structured support. Despite initiatives like regulatory 
sandboxes, TSOs receive insufficient backing for the R&D investments needed to establish 
new operational standards, creating a persistent innovation gap. 

One of the significant limitations of relying solely on AI is that it falls short of providing 
transparent and auditable decision-making processes, as required by regulations. For 
example, event reports are mandated to document why human operators made specific 
decisions, but current AI systems lack the capability to articulate their own decision-making 
logic or provide a clear rationale for their actions in written documents. 

Implementation requires thoughtful human integration. While AI excels at analysing datasets 
and recognising patterns, it cannot fully replicate human judgment in complex operational 
decisions. Historical data may not capture emerging system behaviours in evolving power 
systems. Explainability is key: engineers need to easily understand the underlying data and 
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assumptions to trust and act upon AI recommendations. Human expertise remains essential 
for understanding system-wide implications and managing unexpected situations, with 
ethical considerations and accountability necessitating clear human oversight. The challenge 
is to combine AI’s analytical strengths with operators’ contextual understanding to create 
robust, reliable systems. 

Building on these implementation principles, accelerating AI adoption in grid operations 
could benefit from addressing several barriers simultaneously. Grid operators could consider 
creating dedicated teams with both power system and data science knowledge to address 
the data quality issues. EDP’s Digital Factory (EDP, n.d.) has successfully integrated these skill 
sets to develop AI-based predictive maintenance and grid flexibility solutions. Knowledge 
sharing through peer networks and case studies offers ways to spread successful approaches 
across the sector. Examples include GO15 (GO15, n.d.), IEEE Power & Energy Society (IEEE, 
n.d.), Cigre  (Cigre, 2022), the International System Operator Network (AEMO, n.d.), the 
Energy Systems Integration Group (ESIG, n.d.) and the Neural Information Processing 
Systems Foundation (Neural Information Processing Systems Foundation, n.d.), with which 
the French TSO RTE has been involved through its Learning to Run a Power Network 
competitions.  

Beyond traditional funding, regulatory frameworks could evolve to include incentives 
rewarding improved grid capacity utilisation while maintaining reliability standards, as with 
the European Union Agency for the Cooperation of Energy Regulators (ACER, n.d.), Australian 
Energy Regulator (AER, n.d.) and the Federal Energy Regulatory Commission (United States, 
FERC, 2021). Well-designed regulatory testing environments, such as those in the 
United Kingdom (Ofgem, n.d.) and Singapore (EMA, 2024), present opportunities to bring 
new solutions to market more quickly. Training programmes combining power system 
fundamentals with AI literacy can help operators maintain appropriate control while 
benefiting from AI’s analytical capabilities. These complementary approaches recognise that 
successful AI integration depends on both technical excellence and human expertise working 
in concert. 

Box 3.3 ⊳ Dynamic line rating in power grids: Unlocking unused capacity 

Dynamic line rating (DLR) technology enables transmission lines to carry more electricity 
than their rated capacity. Instead of always using the same fixed limit, grid operators can 
adjust and safely expand the limit when weather conditions are conducive. For example, 
when it is cold or windy, the lines become physically cooler, allowing them to carry more 
electricity. Global experience shows that typically, transmission lines can safely carry 20-
30% additional capacity above their maximum rating for around 90% of the time in any 
given year. 

The value of AI with DLR lies in maximising the benefit of this additional capacity. When 
available, AI assists power system operators in deciding how to optimally use this 
capacity against other options, such as having to curtail renewables because of a lack of 

IE
A.

 C
C

 B
Y 

4.
0

https://www.go15.org/


 

134 International Energy Agency | Energy and AI 

 

grid transfer capacity, or building a whole new line in order to accommodate new peak 
flows. DLR technology does not necessarily rely on AI and has been tested and 
implemented by grid companies worldwide. However, real-time monitoring is crucial as 
actual conditions can occasionally fall below static ratings, creating undetected safety 
risks – making direct measurement vital for equipment safety.  

This untapped resource could be mobilized quickly. DLR systems could activate 115-175 
GW of additional global transmission capacity at a fraction of the $35-52 billion cost of 
equivalent new power lines. DLR’s core value comes from its ability to accommodate new 
power flows from increased demand or generation sources, effectively preventing 
bottlenecks that would otherwise require costly interventions. Nonetheless, barriers 
remain, including resistance from conservative utility cultures and the lack of regulatory 
incentives for efficiency innovations.  

Not all lines require DLR, as bottlenecks are typically concentrated in specific sections. 
The French grid operator RTE estimates that equipping only 20 lines from its transmission 
fleet would maximise benefits. Grid operators should conduct cost-benefit analysis to 
identify priority candidates, considering deployment costs – typically a few hundred 
thousand dollars per line – against potential value. The economic calculation for 
determining how benefits are distributed among generators, consumers and operators 
varies by market structure and regulatory framework. For example, in the United States, 
on implementing DLR, PPL Electric Utilities (PPL, 2023) saved USD 65 million in one year 
by avoiding congestion costs on a single line (PV Magazine, 2025). In Belgium, socio-
economic benefits of several thousands of euros have been reported in just hours, 
particularly when DLR enabled access to cheaper imports during periods of supply 
constraint (CURRENT, 2021).  

For distribution circuits, the cost-benefit ratio has traditionally been less favourable due 
to lower electricity volumes. However, distribution grid companies like Arva in Norway 
managed to save EUR 30 million by avoiding a line upgrade to connect a wind farm by 
using a DLR system from Heimdall Power (Heimdall Power, 2022). 

3.5 AI for energy end-uses  
In addressing AI for end-users of energy, this report focuses on AI applications for energy 
optimisation in industry, transport and buildings. These sectors together account for around 
95% of global end-use energy demand and have become increasingly digitalised and 
connected, unlocking the potential for AI-led optimisation. 

3.5.1 AI for industry  

The industry sector accounts for 39% of energy end-use and 45% of CO2 emissions from 
energy. Energy-intensive industries account for more than two-thirds of industrial energy 
demand, using energy in processes to produce basic materials such as steel, cement, primary 
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chemicals, aluminium and paper, many of which require high temperatures. Light industries 
produce higher-value goods, such as electronics, machines and transport equipment, 
accounting for more than three-quarters of the total value added of the industry sector.  

In industrial settings, the main driver of AI uptake is the reduction in production cost by 
increasing productivity, reducing plant downtime and reducing operating costs, especially 
for materials and energy. AI can also accelerate the development of new products. So far, 
only early adopters (less than 20% of companies) have introduced industrial AI tools, but 
recent technological breakthroughs, especially with large language models, have raised 
awareness of AI’s potential. These breakthroughs, alongside advancements in hardware and 
software, have driven increased interest in AI in industry, with many companies reporting 
plans to implement AI solutions in the coming years (Reuters Events, 2024).   

Figure 3.8 ⊳ AI applications in industry 

 
IEA. CC BY 4.0. 

AI can improve many steps in industrial production, but optimising either single  
processes or the entire plant process has the most direct impact on energy demand 

AI applications in the industrial sector can be divided into seven categories. Three of them – 
predictive maintenance, robots and quality control – are AI applications that are usually 
directly incorporated into the physical manufacturing process (Figure 3.8). A further three – 
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generative design, digital twins and supply chain management – are applications that can 
improve the product development process and general operations. The final category is the 
optimisation of production processes, which combines both aspects by collecting data from 
sensors in the physical process and evaluating the data to optimise operations. 

Table 3.6 ⊳ Applications and potential impact of AI in industry in the short term  

Application Description Impact on energy Example 

Design and development   

Generative 
design 

Generate and test various 
designs or digital prototypes 
using AI algorithms  

● High indirect: Products can 
be designed to be more 
energy efficient; 
production can be 
established faster for new 
technologies 

Improved design of gas 
turbines, shortening 
development time with 
increased turbine 
efficiency (Siemens, 2023)  

Operational optimisation   

Process 
optimisation 

Holistic optimisation of the 
production process through 
collected data 

● High: Energy efficiency 
gains through optimisation  

Improved fuel mix for 
cement production 
(CarbonRe, 2024)  

Quality control Quality check, e.g. through 
image recognition of input 
and output materials and 
products, leading to an 
adjustment in the 
production process 

● Medium to ● High: 
Energy consumption can 
be optimised for the 
desired output quality and 
material needs can be 
reduced 

Optimise scrap use for 
steel production based on 
quality (Fero Labs, 2024) 

Predictive 
maintenance 

Early identification of 
potential issues enabling 
maintenance without 
unplanned downtime 

● Medium: Equipment can 
be operated more 
efficiently 

Detecting stress on 
mechanical elements 

Digital twin Virtual representation of a 
process/factory allowing 
simulation of new 
configurations 

● Medium: Accelerate 
energy-efficient plant set-
ups and identify process 
optimisation  

Real-time simulation of 
new plant configurations 

Supply chain 
management 

Various applications of AI to 
optimise the supply chain 

● Low: More efficient supply 
chain  

Optimising demand, price 
forecasting or transport 

Automation and autonomy   

Robots  Improved management of 
robot automation; better 
handling of variations in 
items and processes; more 
efficient working alongside 
humans 

● Low direct: Minor gains 
through efficient 
movements;  

● Medium indirect: May lead 
to faster product cycles 
and lower costs for 
manufactured goods 

Fully automated smart 
factories, robots 

All of these applications affect the energy demand of industrial processes directly or 
indirectly (Table 3.6). Optimising production processes often directly targets a reduction in 
energy demand and therefore has the highest direct impact. However, other applications, 
such as quality control, predictive maintenance and robots, can also have considerable 
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impacts on energy demand, even though their primary goal is to improve product quality, 
reduce downtime and increase productivity. 

The digitalisation of production processes is a key enabler of AI applications in industry. Once 
a plant’s performance is effectively measured through sensors, stored as accessible data, and 
those data are well-structured and labelled, important productivity and energy gains can be 
achieved. AI algorithms can be implemented to enhance the analysis, especially to convert 
high volumes of collected data into useful information. If the digital infrastructure is in place, 
there is usually a convincing business case for adopting AI.  

The optimisation of production processes has the highest impact on energy demand 

In the industry sector, the AI application with the highest direct impact on energy demand is 
process optimisation. Energy use is usually one of the key parameters to be optimised to 
reduce costs but often also to reach sustainability targets. Optimisation is generally based on 
the collection of data through sensors in the process, which enables the application of AI 
algorithms to a long history of collected data in order to either improve physical models or 
detect inefficiencies. A key requirement is therefore the general digitalisation of the 
production line, after which data need to be gathered for a certain period to be able to train 
models. Following an increasing deployment of digitalisation in industry, widespread 
adoption of existing AI applications could save around 8 exajoules (EJ) of industry energy 
demand by 2035, equivalent to more than the total energy demand of Mexico today.  

In energy-intensive industries, use cases suggest that AI can enable additional efficiency 
savings in single-digit percentages. In these industries, digitalisation and automated control 
of processes are widespread, and AI can be applied without significant extra effort, saving 
around 2-6% of energy demand depending on the industry and use case.  

Cost reductions through AI-enabled energy savings can help to increase the competitiveness 
of energy-intensive industries. As the upfront investment is often low and payback periods 
are short, this can be very attractive, especially in regions with higher energy costs. Such 
costs in these industries account for a significant share of production costs, so energy savings 
can have an important impact on reducing overall costs. We estimate that total energy 
savings from process optimisation in energy-intensive industries through the widespread 
adoption of known AI applications could be around 3 EJ by 2035 (Figure 3.9). Three-quarters 
of these savings are in China and emerging market and developing economies, mainly 
following the geographical distribution of these industries.  

We have based our estimation of the potential on existing published use cases and 
deployment rates (see methodology note in Box 3.1). For example, in the steel industry, the 
second-largest steel producer, ArcelorMittal, has achieved 3% savings at a steel plant in 
Luxembourg and is aiming to reach around 5% in a subsequent project in Belgium. In both 
cases, AI algorithms are being used to assess and optimise the plant’s energy performance 
in real time. The payback time of the project in Luxembourg is estimated to be less than 
two years (ArcelorMittal, 2024). Similar savings have been achieved by use cases in the 
cement industry. For example, in a joint project, HeidelbergMaterials, CarbonRE and ABB 
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managed to reduce the energy consumption of a plant in Czechia by 2.2%, leading to a 4.1% 
reduction in fuel costs. Energy savings in further projects can reach around 5% (CarbonRe, 
2024). AI algorithms can also help to substitute fossil fuels efficiently with alternative fuels 
without a reduction in cement output quality. In the paper industry, case studies in Canada 
and Morocco on optimising control systems and steam flows identified potential savings of 
more than 5% (Batouta, Aouhassi and Mansouri, 2024; Nadim, et al. 2023).  

Figure 3.9 ⊳ Energy savings in the Widespread Adoption Case from 
optimising production processes, 2035 

 
IEA. CC BY 4.0. 

Light industries show a higher relative savings potential as energy use is less optimised; in 
heavy industries, AI can still improve energy efficiency and thereby also competitiveness 

Note: EMDE = emerging market and developing economies.  

Based on an evaluation of existing use cases, the potential savings from applying AI-based 
process optimisation in non-energy-intensive industries are even higher. In many of these 
industries, energy accounts for a lower share of total production costs, meaning energy use 
is not always optimised. Additionally, the share of small and medium-sized enterprises is 
higher, and these often have a lower degree of digitalisation due to the high level of 
investment needed to digitalise production, lower access to digital infrastructure and lower 
skill levels. Low levels of digitalisation are a barrier to harvesting the potential of AI in these 
sectors.  

The high potential impact of AI means the total energy savings it can achieve in non-energy-
intensive industries are higher than in energy-intensive industries, even though they account 
for less than a third of total industrial energy demand. In the Widespread Adoption Case, the 
scaling up of known AI applications could reduce energy demand in “other industry” by up 
to 5.2 EJ by 2035, 70% more than in energy-intensive industries. These savings impact 
electricity demand in particular, reducing it by almost 700 terawatt hours (TWh) globally, as 
electricity accounts for around a third of energy demand in other industry. Advanced 
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economies contribute slightly more to the savings for light industries than for energy-
intensive industries because light industries are projected to grow more in those regions and 
because of their higher digitalisation rates and technological leadership (Box 3.4).  

The difference between the Widespread Adoption Case and the full theoretical potential 
underlines the importance of digitalisation: with full digitalisation, savings could reach 
around 7.5 EJ, almost 50% higher than in the Widespread Adoption Case. The difference 
between the two cases is also more significant for light industries than for energy-intensive 
industries.  

Box 3.4 ⊳ Which regions lead the way in the uptake of industrial AI? 

Advanced economies currently have a competitive advantage in many of the 
technologies required for digitalisation and automation. Across three core segments – 
industrial automation, industrial software and robotics – the vast majority of leading 
global companies are headquartered in advanced economies (Figure 3.10). Europe is 
leading on automation and North America on industrial software, with each having more 
than half the market share in their respective segments. Asia is clearly leading on robots, 
hosting around two-thirds of the top 40 companies by market share. 

Figure 3.10 ⊳ Top 40 companies by headquarter location and technology  

 
IEA. CC BY 4.0. 

Companies with important technologies for industrial AI are mostly headquartered in 
advanced economies, but each technology has a different leading region 

Note: For automation, the analysis uses the revenues of the top 40 companies in 2023, and for robots and 
industrial software the revenues in 2022. 

Sources: IEA analysis based on Control (2024); Statista (2022); IOT Analytics (2022). 

The competitive advantage of existing market shares can be strengthened by company 
strategies and also by policies to support the growth of industrial AI. Alongside clear 
regulatory and legislative frameworks, the availability of models, data and digital 
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infrastructure are important preconditions for industrial AI deployment. With the rise of 
AI, there are also new players – not just start-ups but also software companies – entering 
markets dominated by established companies in the industrial sector. Collaborations 
between different players can be beneficial for leveraging expertise, such as in the case 
of a cement plant in Czechia, with the start-up CarbonRe working with ABB (CarbonRe, 
2024). 

High-tech manufacturing contributes most to the savings potential in light industries. The 
machinery, electronics and transport equipment sectors in particular are more digitalised 
and have high overall optimisation potential through AI. Existing process optimisation often 
currently focuses on single elements of the production process, but AI can help to optimise 
the factory as a whole. This whole-of-factory optimisation can improve the right-sizing of 
production components, such as drives and motors, and can reduce the use of heaters and 
cooling in certain periods of the day. Use cases – such as the Siemens Erlangen factory, the 
Nvidia factory in Guadalajara and the Schneider Electric factory in Wuxi – show energy 
intensity improvements of 25-42% through the application of AI for process optimisation, 
alongside other AI approaches such as digital twins or robotics (WEF, 2025a; Nvidia, 2024). 

Applying AI to quality control to optimise material balance in production processes 

Quality control of material flows through image recognition can play an important role in 
industries where the quality of input and output materials is an important factor in the 
production process. Better classification of input materials can enable optimisation of the 
downstream process parameters, including energy use, while respecting output quality 
constraints. Alternatively, the demand for input materials can decrease if their quality is 
better controlled. 

In the production of steel, aluminium and cement, recycled or alternative materials can be 
used to displace primary production, which reduces energy demand (Figure 3.11). AI 
solutions such as image recognition can measure the quality of these secondary materials to 
maximise their use, helping to reach a higher share of secondary production, enhancing 
circularity and acting as a key mitigation measure to reduce emissions intensities in these 
sectors. For aluminium and steel, the availability of recycled scrap is limited globally and by 
region, but AI can make its use more efficient. Increasing the scrap share by 5 percentage 
points can save on average around 650 terajoules per average steel plant per year. For 
cement, the availability of alternative materials that can replace clinker (the core cement 
constituent) varies significantly by region, but quality control of these alternative materials 
can enable equivalent cement performance at lower clinker-to-cement ratios. At a standard 
cement plant producing 1 Mt per year, improving the clinker ratio by 5 percentage points 
would reduce energy consumption by around 200 terajoules and emissions by around 
40 000 t CO2 per year. 
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Figure 3.11 ⊳ Energy intensity of steel production depending on scrap use and 
cement production depending on the clinker factor by region 

 
IEA. CC BY 4.0. 

Optimising the use of materials in the production process, e.g. through increased  
use of scrap and lower clinker factors, can reduce the required energy 

These technologies have already been implemented by industry. Brazilian steelmaker 
Gerdau, together with Fero Labs, reduced quality variations by 15% by optimising its material 
balance. The quality and efficiency of its ferroalloy consumption were also improved, 
reducing the need for upstream mining and processing of manganese, carbon, niobium and 
vanadium (Fero Labs, 2024). For cement production, AI-based solutions are readily available 
to change the input composition of cement. The solution developed by German startup 
Alcemy reduced the clinker factor by around 3.5% on average, with even greater reductions 
possible through the introduction of new cement compositions, while at the same time 
reducing variations in output quality. This solution is now in use in more than one-third of all 
German cement plants and in more than 30 plants worldwide (alcemy, 2024).  

Indirect impact of AI applications in industry: Bringing down the cost of clean energy 
technologies 

The improvement of manufacturing processes with AI can have an indirect impact on the 
energy sector by reducing the production costs of energy technologies. This is especially 
relevant for clean energy technologies as it can improve their cost competitiveness. Clean 
technology manufacturing has become a growth driver in the industry sector. Input materials 
and components are the most important cost contributors to manufacturing processes 
(Figure 3.12). EVs, heat pumps and wind turbine manufacturing have the highest input 
material and component costs as a proportion of the production cost, at least 80%. Energy 
costs are most relevant for solar PV, electrolyser and battery production.  
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Figure 3.12 ⊳ Levelised cost of production for clean technology manufacturing 

 
IEA. CC BY 4.0. 

Reducing material costs through AI shows the highest potential for EV and wind turbine 
manufacturing, while optimising energy costs has a high potential for solar PV 

Note: CAPEX = capital expenditure; OPEX = operating expenditure.  

Source: IEA (2024b). 

Material and energy costs are the most important components for solar PV manufacturing. 
For energy costs, efficiency gains through AI of 10% – which appear possible for high-tech 
industry according to a range of use cases – can reduce production costs on average by 
around 3%, saving around USD 5 per kilowatt. However, these savings strongly depend on 
the prevailing energy prices and can be higher in regions with higher prices. Upstream cost 
reductions from AI can bring down costs for the most important input materials (aluminium, 
glass and silicon), and generative design could enable lower-cost alternative materials. 
Finally, quality control is a highly relevant application for solar PV manufacturing as cracks 
can be identified in situ, which is particularly relevant for regions with high quality standards. 
A similar approach applied to wind turbine manufacturing has led to a 20% reduction in 
quality defects (WEF, 2025a).  

Materials and components are clearly the most important determinants of cost for battery 
electric vehicles. Around a third of the total costs are from batteries, where AI can help in 
the short term to improve the manufacturing process and in the long term to innovate new 
battery technologies (section 4.4.1). For many years, the use of robots has been growing in 
final car assembly, but AI has further increased the precision of robots and can lead to cost 
decreases in a market with tight margins and high throughputs.  
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3.5.2 AI for transport  

The transport sector accounts for over 55% of global oil demand and more than 20% of CO₂ 
emissions in the energy sector. Road vehicles currently dominate global energy demand in 
transport, accounting for 75% of the total, while aviation contributes over 10% and shipping 
around 10%.  

AI is already transforming the transport sector through applications such as traffic 
management systems, route optimisation for various transport modes using real-time data 
and predictive analytics, operation optimisation, predictive maintenance, autonomous 
vehicles in restricted settings and contrail reduction (Table 3.7). These applications make AI 
particularly well suited for large fleet operators, where AI integration can be streamlined and 
applied at scale, such as in road freight, public transport and ride-hailing services. The same 
holds true for large shipping and aviation companies, where fuel costs account for a 
significant portion of their operating expenditures. The widespread adoption of existing AI 
applications across transport modes could save over 4.5 EJ by 2035 – equivalent to the 
energy consumption of around 120 million cars. 

Table 3.7 ⊳ Potential applications of AI in the transport sector 

Application Description Impact on energy Example 

Operational optimisation   

Operational 
efficiencies 

Enhanced operation 
and management of 
vehicles 

● High: Efficiency gains of 
5-20%, depending on the 
mode of transport 

Reduced idle times, optimised 
routes, more efficient driver 
behaviour, vehicle maintenance 

Capacity 
utilisation 

Increasing load 
factors 

● Medium to ● High: 
Inefficiencies can be reduced, 
potentially considerably, by 
optimising capacity utilisation 

In the European Union, 20% of 
road freight distances are 
travelled by empty vehicles, and 
passenger vehicle occupancy is 
particularly low during 
commuting hours 

Automation and autonomy   

Autonomous 
vehicles 

Reduce or remove 
entirely the need for 
human operation of 
vehicles 

● Low to ● Medium: While 
the long-term impact could 
be significant, adoption is 
currently limited by low 
penetration rates by the mid-
2030s and fleet turnover 
ratios 

Autonomous vehicles can 
promote eco-driving and 
fundamentally alter business 
models by enabling a shift from 
private vehicle ownership to 
ride-sharing 

AI applications in road transport 

AI-led optimisation is being applied in various aspects of road transport, including for route 
optimisation, predictive maintenance and improved capacity utilisation. Urban logistics are 
particularly well positioned to benefit from AI due to their complexity, lower predictability in 
operations compared to fixed-route services and lower operational speeds compared to 
long-haul transport, which in turn increase fuel consumption and vehicle wear. AI-enabled 
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route optimisation can leverage real-time data and algorithms to optimise routes, using GPS, 
traffic, weather and historical data for improved operational sustainability. Studies suggest 
that AI-based route optimisation in road transport can reduce fuel consumption and 
emissions by around 2-15% (WEF, 2025b; Miller, et al., 2024). For example, Greenplan, a DHL 
Express-funded start-up in Germany, developed an AI tool that reduces fuel costs by up to 
20% (DHL, 2020). Route optimisation can also help overcome infrastructure challenges, 
including limited charging point availability for electric trucks, by reducing charging needs or 
optimising routes around infrastructure availability. 

Predictive maintenance for freight fleets is another area where AI can help reduce energy 
use and costs. AI applications can monitor asset health, forecast failures and optimise 
maintenance, detecting issues like engine wear or tyre degradation to prevent costly repairs 
and improve efficiency. For instance, Walmart uses AI for predictive maintenance to improve 
fuel efficiency by 5-7% and reduce maintenance costs (Fleetpoint, 2025). Similar to route 
optimisation, AI-based predictive maintenance also supports EV growth. By predicting EV 
battery lifespans with up to 95% accuracy, AI can help optimise battery charging and prevent 
degradation, which is essential for electric truck fleets. When combined with battery 
swapping technology, it can optimise the performance and lifetimes of large-scale electric 
truck fleets and provide grid flexibility at battery swapping stations. 

Furthermore, AI can improve capacity utilisation in road freight by predicting demand, 
optimising loading and suggesting routes to minimise empty space. For example, if smart 
capacity utilisation strategies were implemented across the US trucking industry, empty 
capacity could be reduced by up to 50%. AI-powered capacity utilisation solutions have the 
potential to cut around 5% of global road freight emissions (WEF, 2025b). AI solutions can 
also reduce fuel demand by optimising truck schedules to minimise idle time. 

Certain driving styles, such as aggressive acceleration or braking, can increase fuel 
consumption by up to 23% in trucks (Mohammadnazar, Khattak and Khattak, 2024). AI can 
use real-time data and machine learning to monitor driving behaviour and external factors, 
offering feedback to optimise driving performance and reduce fuel consumption. As such, 
eco-driving could reduce fuel use by 2-10% (WEF, 2025b). Electric trucks and other modern 
vehicles with software capabilities are ideally positioned to benefit. 

Some vehicle types are better-suited to benefit from AI integration, with autonomous trucks 
being an ideal candidate for enhanced AI-driven demand reduction in road freight. They can 
fully integrate AI solutions for operational optimisation and capacity utilisation. For example, 
TuSimple, a self-driving start-up, demonstrated that autonomous trucks can reduce fuel 
consumption by 10-20%, with the greatest gains occurring at lower speeds (FreightWaves, 
2019). 

The proliferation of AI applications in the road freight sector has the potential to reduce 
energy demand from heavy-duty trucks by over 1 EJ by 2035 in the Widespread Adoption 
Case. Light commercial vehicles could also benefit from AI-enabled efficiencies, reducing 
energy demand by approximately 0.5 EJ (Figure 3.13). Combined, these achieve energy 

https://reports.weforum.org/docs/WEF_Intelligent_Transport_Greener_Future_2025.pdf%20(https:/www.nature.com/articles/s41560-019-0356-8)


 

Chapter 3 | AI for energy optimisation 145 

 

3 

demand reductions that are around 4% of total road freight energy demand in 2035 in a 
pathway that accounts for today’s policy settings. The full theoretical potential, should 
barriers to AI’s implementation be overcome, could see total AI-driven demand reductions 
in the road freight sector of over 3 EJ by 2035 – equivalent to the total energy demand of 
Argentina today.  

Figure 3.13 ⊳ Energy savings in road freight in the Widespread Adoption Case, 
2035 

 
IEA. CC BY 4.0. 

By 2035 AI-driven reductions in energy demand for road freight could reach over 1.5 EJ,  
or 4% of total road freight energy demand in 2035 under today’s policy settings 

Beyond road freight, AI could revolutionise how passengers meet their mobility needs. AI is 
already being implemented in public transport (e.g. Transport for London uses AI for traffic 
management) (Transport for London, 2021) and is well positioned to play a key role in the 
future, enabling smart scheduling, demand prediction and better resource allocation, 
reducing unnecessary trips and potentially reducing fuel consumption by 12-20% (Miller, et 
al., 2024). Similar to commercial freight fleets, AI can improve public transport fleets with 
predictive maintenance, enhancing efficiency and vehicle lifespans and enhancing the 
benefits of electrification for bus operators. 

For passenger cars, AI-enabled eco-driving presents significant potential, offering up to 20% 
reduction in fuel consumption (Igliński and Babiak, 2017). However, this is only achievable 
when vehicles are equipped with intelligent software that provides real-time feedback to 
drivers. 

Autonomous vehicles (AVs) offer the greatest untapped potential in the passenger car 
segment, although with a high degree of uncertainty. AVs optimise fuel consumption through 
eco-driving algorithms, reduced idling, smarter routing and predictive maintenance, and by 
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co-ordinating with infrastructure and other vehicles. Studies suggest that optimised AVs can 
cut fuel consumption by over 20% compared to conventional cars (University of Michigan, 
2024). They can also boost occupancy rates through shared mobility, especially for 
commuting trips, potentially cutting urban car ownership by 20-40% (Zhang, Guhathakurta 
and Khalil, 2018; Henderson and Spencer, 2016). Autonomous ride-hailing is already growing, 
with Waymo, an autonomous taxi company, now matching Lyft’s 22% market share in San 
Francisco, having completed a total of over 5 million driverless trips – 4 million in 2024 alone 
(The Driverless Digest, 2024; Waymo, 2024). However, while AVs can lead to energy savings 
for individual rides, they may significantly raise road transport energy demand in aggregate 
if service demand is boosted by travel cost reductions and improvements in productivity and 
driving comfort (Bhat, Asmussen and Mondal, 2022). This section does not consider the 
potential for AVs to increase transport service demand, but planning may be needed to 
mitigate rebound effects (see Box 3.5). 

Box 3.5 ⊳ How AI could enable smart cities 

AI can be especially useful in complex transport environments like cities. Sensory 
networks in urban areas collect data on passenger numbers, congestion and key routes 
for charging and refuelling. For instance, the European Union is working on AI-driven 
traffic management to prevent idling in traffic jams (ERTICO, 2024) and port automation 
for truck platooning and AI-supported living labs (5GLOGINNOV, 2024).2  

In urban design, AI helps city managers create predictive models for various scenarios, 
such as optimising waste collection routes and anticipating autonomous vehicle services. 
For instance, the Google Environmental Insights Explorer enhances fuel-efficient routing 
and analyses energy consumption data in cities worldwide (Google, 2025). AI can also 
accelerate design timelines for urban infrastructure upgrades, such as metro expansions, 
cycle lanes, bus route optimisation and public transport. For example, a Berlin case study 
used AI-driven methods to identify key locations for bike sharing and upgraded cycling 
infrastructure (Kaiser, Klein and Kaack, 2024). Setting sustainability and safety criteria in 
the design of automated system rules ensures pedestrians and vulnerable users are 
prioritised in these smart cities.  

AI also enhances urban transport efficiency by using big data. For example, a German 
case study showed that precise roadway data and spatial planning in urban spaces could 
reduce material intensity and associated greenhouse gas emissions significantly by 
suggesting ideal locations for optimal access to services. Providing location-specific 
recommendations at the city and street levels reduces the need for car use, heavy 
infrastructure and material consumption (Milojevic-Dupont and Creutzig, 2021). Detailed 

 
2 The living labs are testbeds for interconnected freight hubs. Under the 5G-LOGINNOV project this comprises 
a range of port-driven technological and societal innovations, tailored to realise objectives including 
automation for ports, generation of data on trucking and shipping emissions, automated truck platooning and 
the involvement of high-tech SMEs.  
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datasets on routes and interactions between taxi drivers can enable more efficient ride-
hailing services, lowering emissions by optimising shared taxi rides and reducing the need 
for individual cars. Demand prediction and smart scheduling of public transport could 
lead to significant energy efficiency gains using AI-powered data analysis (Miller, et al., 
2024). An overview of the opportunities for optimised energy end-uses through AI in 
cities is shown in Figure 3.14. 

Figure 3.14 ⊳ AI applications in transport  

 
IEA. CC BY 4.0. 

AI can deliver optimisation and improved operations across multiple end-uses, 
especially for passenger and freight urban mobility 

However, it is important to note that AI’s energy demand outcomes can be mixed. For 
example, automated vehicles may increase demand for ride-hailing, displacing journeys 
from public transport to private vehicles, which could result in higher energy 
consumption and more road space requirements (IPCC, 2022a). AI applications in urban 
areas must be dynamic, adaptable and transparent to mitigate adverse energy rebound 
effects and ensure long-term infrastructure sustainability. 
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The current rise of EVs paves the way for potential synergies with AV growth as electrification 
enhances digitalisation in vehicles, thus enabling AI integration. EVs, with more drive-by-wire 
components, simplify vehicle automation. Although costlier upfront, they offer lower fuel 
and maintenance costs, making them ideal for running high annual mileages, as in shared 
autonomous fleets. A number of companies, such as BYD, Renault, Tesla and Hyundai 
(partnering with Waymo), are investing in autonomous-ready EVs, with around 
10 automakers currently working on advanced level autonomous driving systems. AI-
integrated AVs also hold considerable potential for grid security support. Shared, automated 
and electric vehicle fleets can optimise charging infrastructure use, accelerate investment 
returns on infrastructure and enhance vehicle-to-grid integration, benefiting both grid 
stability and fleet operators (see section 3.5.3). Furthermore, these fleets are managed by 
fleet operators who can ensure that the vehicles are strategically positioned to meet 
immediate transport demands as well as longer-duration charging and vehicle-to-grid 
operations, while co-ordinated fleet dispatch minimises idle time. 

Figure 3.15 ⊳ Energy savings in passenger vehicles in the Widespread 
Adoption Case, 2035 

 
IEA. CC BY 4.0. 

AI-driven reductions in energy demand for passenger vehicles reach over 1.5 EJ by 2035, 
accounting for over 3% of total road passenger demand under today’s policy settings 

AI applications for passenger cars could cut energy demand by nearly 1.5 EJ in 2035 in the 
Widespread Adoption Case (see Box 3.1 for the methodology), with a large proportion of the 
savings coming from operational optimisation, mainly eco-driving. AI-driven efficiencies, 
such as smart scheduling and demand prediction, could also reduce bus energy demand by 
close to 0.3 EJ – over 5% of the total energy demand in road public transport in 2035 in a 
pathway consistent with today’s policy settings (Figure 3.15). However, if AI were integrated 
into the passenger transport system at full scale, with barriers to deployment overcome, the 
technical potential energy demand reduction could reach 7 EJ by 2035. 
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AI applications in air, shipping and rail  

In aviation, AI-driven flight route optimisation systems show the potential to reduce fuel 
consumption by 5-12% per flight (Alaska Airlines, 2024; McKinsey & Company, 2017). In 
shipping, AI-based navigation platforms with voyage optimisation tools can reduce fuel 
consumption by up to 10% by minimising extreme manoeuvres and travel distances (Orca AI, 
2024). They can also benefit shipping operations by taking advantage of favourable currents 
and winds. Maersk, for example, has utilised such AI-based tools since 2010 to map out 
optimal routes, factoring in real-time data on weather conditions, port congestion and fuel 
efficiency (Medium, 2024). AI-based autonomous navigation systems can reduce fuel 
consumption by up to 15% (Miller, et al., 2024). AI-powered energy optimisation systems 
enabled Carnival Corporation, the world’s largest cruise line operator, to achieve a 5% 
reduction in fuel consumption across its fleet (Sailor Speaks, 2024).  

Rail is the most electrified transport mode, with over two-thirds of activity currently 
electrified, and yet AI may offer even greater energy savings. AI-based operation 
optimisation systems, including routing and predictive maintenance tools, can reduce rail 
energy demand by up to 20%. VIA Rail Canada, SNCF and Deutsche Bahn use AI-enabled eco-
driving systems to reduce energy consumption, with expected reductions of 10-15% (UIC, 
2024). Autonomous trains with GoA3-level automation can achieve even higher fuel 
consumption reductions by increasing system capacity and optimising network operations. 

Figure 3.16 ⊳ Energy savings in non-road transport modes in the Widespread 
Adoption Case, 2035 

 
IEA. CC BY 4.0. 

With the adoption of known AI applications, energy demand savings for non-road modes 
could reach around 1.5 EJ by 2035, with aviation accounting for half of these 

In the Widespread Adoption Case, energy demand reductions in non-road modes could reach 
around 1.5 EJ by 2035, with aviation accounting for half of these savings. In rail, the high level 
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of system electrification ensures that energy savings are close to 8% of total rail energy 
demand in 2035 in a pathway consistent with today’s policy settings (Figure 3.16). If the full 
theoretical potential of existing AI applications were realised, energy savings by 2035 could 
reach nearly 4 EJ, equivalent to the energy demand of the transport sector in Brazil today.  

Box 3.6 ⊳ How AI could reduce contrails 

Contrails, or condensation trails, form on the basis of several factors, including ambient 
temperature, humidity and water vapour content, and the aircraft’s engine efficiency and 
the energy content of the fuel (IATA, 2024). Clouds created by contrails may account for 
nearly 60% of aviation’s global warming effect, although the exact impact remains 
uncertain (IPCC, 2022b). While contrails usually disappear within seconds, they can 
persist if aircraft fly through regions with sufficient water vapour to form ice clouds but 
with insufficient solid particles for condensation. 

Contrail creation is highly concentrated, with 3% of global flights accounting for 80% of 
contrail warming in 2019 (Teoh, et al., 2024). By identifying the regions of extremely cold 
and humid air, aircraft can be rerouted to reduce contrail creation. AI offers a scalable 
and cost-effective solution for achieving this. As contrail navigational avoidance is an 
operational change, it does not require capital costs for equipment modifications and can 
be implemented quickly. Since contrails form in ice-saturated air below a critical 
temperature threshold, they can be avoided by altering flight paths. AI can predict when 
and where contrails are likely to form by analysing weather, satellite and flight data, 
enabling airlines to optimise routes by redirecting aircraft to different altitudes. AI can 
predict when and where contrails are likely to form by analysing weather, satellite and 
flight data, enabling airlines to optimise routes by redirecting aircraft to different 
altitudes (The Guardian, 2023). 

American Airlines tested Google’s AI-driven predictions to avoid contrail-prone routes, 
reducing contrails by 54% at a cost of USD 5-25/tCO₂-eq. Flights that avoided contrails 
consumed an additional 2% fuel. However, since only a fraction of flights produce 
contrails, the overall increase in fuel consumption across an airline’s fleet would be less 
than 0.5% (Google, 2023). Another study developed an algorithm to detect contrails using 
satellite images, air traffic data and meteorological data, helping to identify aircraft 
responsible for contrail formation (Riggi-Carrolo, et al., 2024). Reducing contrails is 
crucial and should be paired with fuel switching, efficiency gains and demand 
management to cut aviation CO₂ emissions. 

3.5.3 AI for buildings  

Despite the transformational growth of digital technologies in recent decades, buildings have 
largely continued to be constructed and used without benefiting from such technologies. 
Buildings have remained passive actors in the energy system, often resulting in energy 
wastage and suboptimal indoor environments. However, several encouraging trends are 

https://sites.research.google/contrails/
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emerging that could change this status quo. First, the energy performance of new buildings 
and existing commercial buildings has seen steady improvement in the past decade, 
including through greater uptake of digital solutions. Second, retrofit activity has also 
increased, although largely in advanced economies. Third, flexible electricity tariffs are being 
rolled out in many parts of the world, providing the right incentives for consumers to install 
intelligent systems. Finally, the electrification of heating has been accelerating, which offers 
much greater system flexibility and controllability. To complement these trends, new AI-led 
solutions for buildings are emerging that could help make building construction and 
operation more energy efficient, more cost-effective and user-friendly (Table 3.8).  

Table 3.8 ⊳ Potential applications of AI in buildings 

Application Description Impact on energy Example 

Design and development   

Design and 
construction 

Optimise design, materials 
and construction 
techniques for more 
efficient buildings 

● Low: Reduces heating 
and/or cooling needs 
due to improved 
insulation 

Better material choice, 
lower heat transfer to 
environment, lower 
construction costs 

Operational optimisation   

Efficient 
management of 
technical buildings 
systems 

Use of sensor data from 
digitalised buildings to 
gain efficiencies; 
predictive maintenance of  
HVAC equipment 

● High: Reduces energy 
consumption; supports 
affordability; ensures 
user comfort  

● Low: Reduces 
downtime; improves 
performance of 
systems 

Optimised HVAC 
operation through 
learning the building 
physics and forecasting 
occupancy and usage 

Unlocked potential 
for demand flexibility 

Optimise energy use in 
real time by better 
assessing energy needs in 
tandem with grid 
capabilities 

● Medium: Supports 
renewables 
integration and peak 
management; reduces 
household energy bills 

Active management of 
electricity consumption in 
thousands of buildings, 
providing flexibility to the 
system while learning 
individual building 
behaviour 

Note: HVAC = heating, ventilation and air conditioning.  

AI in operation: Efficient management of technical building systems 

Building energy management systems (BEMS) have been around for decades, used mainly in 
commercial buildings and large residential developments. As the computational power of 
these systems has increased over time, BEMS have gained accuracy in optimising energy 
consumption based on weather forecasts and occupancy data, among other factors. AI is 
now enabling a new generation of BEMS that surpass the performance of legacy systems. 
AI-powered BEMS can process a far greater number of data points and undergo regular 
retraining, ensuring heating, ventilation and air conditioning (HVAC) controls are calibrated 
more frequently to better pre-empt user needs. Machine learning algorithms can use real-
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time weather, occupancy and indoor temperature data to map the physical properties of a 
building, which in turn enables AI models to discover thermodynamic equations that most 
accurately forecast the future needs of occupants. Since AI-enhanced BEMS rely on cloud-
computing resources, these systems can make better use of external data points, such as 
electricity prices, grid frequency, weather forecasts, solar irradiance, outdoor air quality and 
local traffic density. All of this allows AI-enabled BEMS to deliver more comfortable energy 
services with less energy and lower costs.  

In Sweden, a municipal real estate company managing over 600 schools switched from 
conventional BEMS to more sophisticated AI-enhanced BEMS, which resulted in around 10% 
electricity savings (Paccou and Roussilhe, 2024). The new system uses data from nearly 
10 000 sensors throughout the school network, before complementing this database with 
weather data, energy tariffs and social data. An AI model is then used to create a digital twin 
of each building and to determine the optimal HVAC control set points every 15 minutes. In 
India, a multinational IT services and consulting company introduced AI-powered BEMS in a 
campus that accommodates over 30 000 people in a variety of buildings, including offices, 
food courts, car parks, a hotel and a data centre (Infosys, 2024). This highly efficient campus 
was already Leadership in Energy and Environmental Design Platinum certified prior to the 
intervention. Despite this, AI-powered BEMS achieved a further 7% increase in energy 
efficiency.  

In some cases, substantial savings have not required investment in new hardware. A 
technology manufacturer in Singapore hired an external service provider to optimise the 
existing BEMS used to manage its 27 000-square metre regional headquarters. Using 
one year of historical data from the existing BEMS, an AI model optimised controls and 
identified savings of 23% in cooling energy use (Industrial Analytics, 2024). AI algorithms 
excel at detecting unusual patterns in buildings data and adapting controls accordingly, 
which can lead to exceptionally high energy savings in buildings that experience extreme 
weather conditions. When AI-enhanced BEMS was introduced in the Monte Rosa Hut, sitting 
at an altitude of 2 883 metres in the Swiss Alps, a 30% reduction in energy consumption was 
attained (Siemens, 2025).  

While full BEMS – covering HVAC, lighting, electrics, plug loads, shading and on-site power 
generation from a single control interface – are only used in a small share of commercial 
buildings, network-enabled HVAC controls that provide similar functionalities are 
commonplace in the sector. In advanced economies, over half of all commercial floorspace 
is equipped with automated HVAC controls and can benefit from AI solutions with minimal 
investment in additional hardware. Meanwhile, only a small share of residential buildings are 
in the same position (Figure 3.17). This reflects not only the higher level of digitalisation and 
turnover of HVAC systems in commercial buildings but also their higher level of 
electrification. Technologies powered by electricity, such as air conditioners and heat pumps, 
are far more likely to include automated controls compared to HVAC systems powered by 
fossil fuels. 
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Figure 3.17 ⊳ Share of floorspace with digitalised HVAC, Widespread Adoption 
Case and theoretical potential, 2024, 2035 

 
IEA. CC BY 4.0. 

Much non-residential floorspace already features some form of automation, mostly in 
advanced economies; residential floorspace lacks automation but a lot can be achieved 

Notes: AE = advanced economies; EMDE = emerging market and developing economies. Non-residential 
includes commercial, industrial and public buildings.  

In the Widespread Adoption Case, AI solutions are used to optimise operations in buildings 
that use digitalised, electrically powered HVAC systems, based on current digitalisation and 
electrification trends. The theoretical potential remains far greater, demonstrating what 
could be achieved if the vast majority of electrically powered HVAC systems were network-
enabled. When assessing the theoretical potential, electrification is maintained at levels 
achieved in a pathway incorporating today’s policy settings. It is this electrification rate that 
limits the potential for AI-ready floorspace in advanced economies more than any other 
factor. It is also the reason why advanced economies see relatively little growth in AI-ready 
commercial floorspace compared to China and other emerging market and developing 
economies, where greater expansion is driven by increased cooling access.  

Although electrification trends are more positive in China and other emerging market and 
developing economies, the potential for digitalisation in these countries is held back by the 
prominence of conventional room air conditioners that lack automated controls and cannot 
be connected to the Internet. Lack of access to cooling services further reduces this potential 
in emerging market and developing economies outside China. In 2035, only 38% of 
floorspace in these regions benefits from cooling, compared with 46% in advanced 
economies and 56% in China.  

These countries are also characterised by lower rates of digitalisation in buildings today. For 
example, the majority of buildings in advanced economies and China are equipped with 
smart meters, whereas coverage in emerging market and developing economies typically 
ranges between 5% and 20%. Consumers in these countries are also less likely to purchase 
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highly efficient air conditioner models that typically include network-enabled scheduling 
options. Such air conditioners make up less than a half of sales in these markets, compared 
with over 90% of sales in advanced economies and China. 

Based on current digitalisation trends, the widespread use of AI in buildings saves more than 
300 TWh in global electricity demand in 2035, equivalent to 5% of the total consumption of 
electricity for heating and cooling. Commercial buildings in advanced economies and China 
are responsible for the bulk of these savings. If the full theoretical potential were exploited, 
savings rise to nearly 500 TWh thanks to the greater role of digitalised residential buildings, 
especially in emerging market and developing economies (Figure 3.18). 

Figure 3.18 ⊳ AI-enabled energy savings in buildings, Widespread Adoption 
Case and theoretical potential, 2035 

 
IEA. CC BY 4.0. 

AI contributes to energy savings mostly in non-residential buildings in advanced 
economies by 2035, but the theoretical potential is much larger 

Note: EMDE = emerging market and developing economies. 

The theoretical potential of AI can be achieved by ensuring that all new HVAC systems sold 
are network-enabled, and by creating incentives for consumers and companies to 
complement existing electrified systems with network-enabled hardware. Hardware 
requirements for transforming conventionally electrified buildings into digitalised buildings 
vary substantially, depending primarily on the intended results. At the bare minimum, a 
gateway or a “Wi-Fi module” is needed to connect HVAC controls to the Internet 
(Figure 3.19). Beyond that, the number of control sensors installed throughout the property 
determines just how effective energy optimisation software will be. A wider network of 
sensors provides more accurate data on user behaviour as well as monitoring and control 
over individual systems. For instance, software operating a home with only two sensors 
would fail to register when a user opens a window in a third room or enters home from the 
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garage. It would also fail to detect when one of the devices is not performing as expected. AI 
algorithms excel at fault detection and diagnosis. In one comparative study, AI-enhanced 
fault detection and diagnosis software showed a 30% improvement in prediction accuracy 
compared with conventional tools. Costs of Internet of Things sensors have seen a steady 
decrease over time, falling by more than 50% globally between 2010 and 2020, depending 
on the market. Once a gateway is set up, the marginal cost of installing additional sensors is 
rather limited. In some markets, companies offering demand flexibility services will cover the 
cost of installing gateways and sensors for new customers.  

Figure 3.19 ⊳ AI applications in buildings that lack network-enabled HVAC 
controls 

 
IEA. CC BY 4.0. 

AI applications in buildings can enable energy savings even with the  
deployment of only a limited number of connected devices and sensors 

AI in operation: Unlocking potential for demand flexibility 

Buildings consume half of the electricity generated globally, but they remain largely passive 
consumers with little ability to adjust in response to grid conditions or price signals. As a 
result, they place a substantial burden on power systems: the sector contributes to 70% of 
peak electricity demand on average in advanced economies, and this share is set to increase 
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in the near future with the electrification of heat, increased cooling access and EV charging. 
Consumption patterns in buildings are particularly misaligned with renewable generation, 
and in the early evening, electricity demand surges to levels as high as twice the night-time 
average. During heat or cold waves, consumption from buildings can become a major threat 
to grid stability. 

Existing projects already tap into the flexibility potential of buildings, but AI can unlock new 
opportunities with increased accuracy, more effective grid integration and greater scale. 
With its capacity to learn complex patterns in large-scale datasets, machine learning 
algorithms can understand individual household consumption behaviour, aggregate 
thousands of buildings into a virtual resource and deliver robust and reliable flexibility 
services. AI unlocks new potential by learning from individuals but operating as a system: as 
with a hive, the response robustness comes from the averaging of individual uncertainty 
within the group.  

This potential can also be deployed for individual large-scale buildings. Where existing 
systems require large sets of sensors combined with strong configuration to provide 
flexibility services, machine learning algorithms can effectively co-ordinate EV chargers, 
HVAC equipment and on-site generation with real-time grid status and electricity prices. 

In residential buildings, Voltalis provides households with a free device equipped with a 
smart switch, a sensor and a gateway, allowing its AI-supported remote platform to optimise 
the operation of electric heaters based on market conditions, ultimately reducing household 
electricity bills without compromising comfort (Voltalis, 2025). This case study shows that 
the rollout of relatively simple hardware can be scaled quickly without requiring upfront 
investment from the consumer. Similarly, in the United States, over 15 million households 
are already benefiting from smart thermostats, such as those enabled by Nest. These services 
leverage AI to adjust heating and cooling in response to grid signals, helping to lower energy 
consumption and costs, although a Nest thermostat is required to partake in the programme. 

Despite the growing availability of automated charging features, they remain heavily under-
utilised. Most EV charging point manufacturers offer scheduling options, and over half of the 
United Kingdom’s EV chargers are now smart. Yet, most UK households still charge their EVs 
upon arriving home – coinciding with peak electricity demand. Additionally, over two-thirds 
of UK EV owners do not subscribe to an EV tariff or a time-of-use tariff (DESNZ, 2024). Cloud-
based services powered by AI algorithms can address this without any installation costs. 
These solutions, often hardware-agnostic and compatible with Open Charge Point Protocol 
chargers, optimise charging based on grid conditions. Further efficiencies can be gained by 
integrating building sensors that feed AI algorithms with data to better forecast user 
behaviour. 

We estimate that the adoption of AI in digitalised buildings has the potential to deliver 
significant flexibility capacity. In the Widespread Adoption Case, buildings add more than 
400 GW of flexible capacity to the electricity system, equivalent to 10% of peak demand on 
average. If the full theoretical potential is exploited, demand flexibility from buildings 
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reaches 700 GW, equally distributed between space and water heating, cooling and EV 
charging (Figure 3.20). That capacity can be operated to support power system needs, such 
as peak management, saving on expensive fuel, avoiding peak electricity capacity additions 
and supporting renewables integration. Where the building’s thermal inertia could act as a 
constraint on multiple-hour flexibility, AI can co-ordinate across the set of buildings and bring 
reliable flexibility services over long durations with no significant temperature variation. 

Figure 3.20 ⊳ AI-enabled flexible demand capacity by end-use and share of 
peak demand, 2035  

 
IEA. CC BY 4.0. 

AI unlocks new potential for smarter, self-aware buildings  
with flexible energy use and grid integration 

Notes: AE = advanced economies; EMDE = emerging market and developing economies. Heating includes 
water heating.  

AI in building design and construction 

AI is transforming the construction industry and building design by enhancing efficiency and 
accuracy, reducing costs and fostering innovation across various project design phases.  

AI facilitates the optimised selection of passive design strategies, such as daylighting, 
ventilation and shading systems, and low-carbon building materials to reduce a building’s 
energy loads and embodied carbon while still ensuring high levels of thermal comfort for 
building occupants. These early-stage optimisations can reduce the need for costly post-
construction modifications and achieve up to an 85% reduction in a future building’s energy 
consumption (Manmatharasan, Bitsuamlak and Grolinger, 2025). 

Natural language processing enables AI systems to interpret and extract relevant information 
from a large number of construction project documents, while machine learning algorithms 
can process extensive data from building sensors on past energy usage and environmental 
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conditions, uncovering patterns, relationships and best practices that might be missed by 
human analysis (Szalai, et al., 2023). The following are some examples: 

 AI-enhanced surrogate modelling can be used instead of computationally expensive 
physics-based simulations, with machine learning models that can quickly predict 
building performance. These models can help optimise choices of construction material, 
building size and orientation to minimise heating and cooling loads (Manmatharasan, 
Bitsuamlak and Grolinger, 2025). 

 Deep reinforcement learning AI frameworks are able to iteratively improve building 
envelope configurations. These models can be trained on past weather data to improve 
design choices and achieve higher performance of building envelopes, taking into 
account a variety of parameters, including climatic conditions and the energy needs of 
occupants. The results from a study on the deployment of such models demonstrated a 
reduction in building energy usage of up to 20% (Karimi, et al., 2024).  

 AI-driven generative design tools, such as those integrated with Autodesk’s platforms, 
allow architects to input specific design goals and constraints, including requirements 
for a certain level of building energy performance, embodied carbon and resilience. The 
AI tools are able to explore numerous design variations to identify optimal solutions that 
balance aesthetics, functionality and sustainability (Soto, 2024). This generative design 
approach can lead to cost savings of up to 15% in materials and labour (Market.us Scoop, 
2024).  

By analysing data and patterns quickly and effectively, AI algorithms can also help identify 
potential issues in buildings design, ensuring that the resulting building aligns with project 
requirements and specifications. This can help facilitate compliance with buildings 
regulations and speed up and enhance the accuracy of building energy performance 
assessments, which is crucial for energy audits and building energy certification. 

AI can help tackle cost overruns in the construction industry, where it is estimated that about 
75% of projects exceed budgets, with an average 15% cost increase due to mid-project 
changes (Abdelalim, et al., 2025). As projects grow in complexity, managing costs effectively 
becomes more challenging. AI-driven predictive analytics and optimisation models can 
identify risks early, improve budget forecasting and streamline decision making, ensuring 
projects stay on time, are within budget and meet quality standards. AI-powered tools can 
also help reduce costs in a building’s design phase, while automation of repetitive tasks 
reduces labour costs (Usman, 2024).  

AI can also help reduce wastage of construction materials, thereby reducing embodied 
carbon emissions from buildings. Estimates indicate that up to 50% of material waste can be 
avoided using AI tools (Usman, 2024).  

Real-life projects already demonstrate the benefits of AI tools for more sustainable building 
design and construction: 
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 The Shanghai West Bund AI Tower incorporated AI-driven simulation technology early 
in its design process to predict wind flows and optimise building energy performance. 
The building’s aerodynamic design makes use of passive strategies, such as natural 
ventilation, daylighting, sun-shading vertical fins and operable windows, reducing 
reliance on mechanical cooling and artificial lighting (ArchDaily, 2023). The building is 
expected to achieve energy savings of over 35% compared to a similar conventional 
building (WSP, 2025). 

 In Australia, AI-integrated 3D printing is being pioneered to construct homes rapidly and 
cost-effectively. The first 3D-printed multi-storey house in the southern hemisphere was 
built in a Melbourne suburb in just five weeks – a fraction of the time that would be 
required for traditional construction methods (Blair, 2025). AI-based reinforcement 
learning algorithms were used to maintain the quality of each printed layer, ensuring 
not only aesthetic appeal but also structural integrity, optimising layer placement for 
durability and accuracy (Luyten, 2025).  

 AI models were utilised to generate concrete mixes that reduce cement usage without 
compromising the material’s strength in the construction of Meta’s data centre in 
DeKalb, Illinois (Miller, et al., 2022). The AI-designed concrete mixes demonstrated up 
to 40% lower carbon emissions in relation to conventional concrete (Ge, et al., 2022). 

3.6 AI for energy system resilience 
Resilience in energy systems underpins energy security and affordability. A significant risk to 
energy system resilience lies in the impacts of weather conditions. Both demand and supply 
fluctuate as weather systems sweep across the globe, and the effects are multiple and varied. 
Temperature variations affect energy demand, such as heating and cooling demand in 
buildings or the efficiencies of industrial processes and transport. Energy supply is affected 
not just by sources directly dependent on meteorological conditions – including solar and 
wind power – but also by factors such as the availability of water for power stations or grid 
network efficiencies being impacted by temperatures. 

Accurate weather forecasts and the analysis of changing weather patterns in a warming 
world are essential to optimise the operation (see section 3.4), planning and resilience of 
energy systems. AI has recently been applied to weather forecasting, with promising results. 
In 2025, the European Centre for Medium-Range Weather Forecasts (ECMWF) launched its 
Artificial Intelligence Forecasting System, which runs multiple times daily and generates 
public forecast data. Most AI approaches rely on physics-based methods to generate 
reanalysis data from weather observations for training, meaning that AI methods will 
probably complement rather than replace physics-based numerical weather prediction in the 
future.  
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Key benefits that AI could bring to weather forecasting include the following: 

 Reduced computational demand: Standard numerical weather prediction is extremely 
expensive computationally, with a typical 10-day forecast runtime of several hours on a 
high-performance facility. By contrast, AI forecasts can be generated in minutes on a 
single graphics processing unit. This has implications for energy use: the Artificial 
Intelligence Forecasting System model uses about one-thousandth of the electricity to 
run a single forecast than its numerical weather prediction equivalent (ECMWF, 2025).3 

 Better representation of uncertainty: Modern numerical weather prediction forecasts 
are typically built from ensembles that present a range of future weather possibilities. 
AI could be used to increase the number of ensemble members, better representing 
high-risk, low-probability events such as extreme weather. 

 Better local forecasting: A key challenge for traditional forecasting methods is the 
increase in computational demand from higher spatial resolution. AI could be used to 
combine local observations with ensemble outputs from global forecasts to generate 
better local forecasts (Harris, et al., 2022). 

Progress on using AI for climate modelling has been slower than for weather forecasting, 
largely due to limited training data and the “out-of-sample” nature of climate change, which 
creates changes to weather patterns that are absent from historical records. However, there 
has been progress in applying AI to the development of climate “emulators”, which can 
shrink calculation times from months or even years for a single scenario using physics-based 
models to minutes (Balaji, et al., 2017; Watt-Meyer, et al., 2024). AI has also been used to 
downscale the outputs of physics-based models from around 100 km to 12-25 km, as well as 
to better understand extreme climate-related events (Rampal, et al., 2024; Camps-Valls, et 
al., 2025). 

Energy system resilience and recovery  

A better understanding of how extreme weather events play out at the local level can 
improve the resilience of energy systems, reducing rebuild costs and the economic losses 
associated with blackouts, particularly in emerging market and developing economies (Hao, 
et al., 2023). AI-based tools have been developed to enable the spatial downscaling of 
climate model outputs and satellite data in order to generate climate risk indicators related 
to flooding, wildfires, droughts, wind and rainfall. These tools can achieve spatial resolutions 
ranging from 25 km to less than 100 metres (Mitiga Solutions, 2025; Jupiter Intelligence, 
2025).  

AI is well suited to help at the different stages of extreme weather management. An 
improved representation of extreme weather events in conjunction with data harvested 
from drones, satellites and sensors can enable AI to pinpoint vulnerabilities in energy 

 
3 This does not include electricity use for training the AI model, which can be significant: for example, training 
Google DeepMind GraphCast model takes about four weeks on 32 Cloud TPU devices (Lam, et al., 2023). 
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systems, identify necessary reinforcements, provide early warnings and optimise the damage 
appraisal of assets. 

Machine learning platforms are being developed that use short-term weather forecasts to 
anticipate potential outages caused by extreme weather events. For example, Enedis, the 
distribution system operator in France, is using a machine learning tool to predict outages 
on the distribution grid caused by windstorms with an accuracy of 90% (ENEDIS, 2024).  

AI can help build better early warning systems. For instance, Pano AI uses AI with ultra-high-
definition cameras and geosatellite data to detect wildfires. This system is already deployed 
on Xcel Energy’s infrastructure in the United States. AI-equipped miniature cube satellites 
have also been developed that can detect fires 500 times faster than traditional ground 
methods (Lu, et al., 2024); Google’s new FireSat project aims to detect wildfires measuring 
just 5 metres by 5 metres in under 20 minutes. Beyond detection, AI also outperforms 
traditional models for wildfire forecasting, spread prediction and the prevention of fires 
started by faults in electricity grids (Oulad, Mousannif and Al Moatassime, 2019; Huot, et al., 
2022; PG&E, 2024). 

Floods can severely damage energy infrastructure and can cause widespread and prolonged 
power outages when substations are inundated. Faster AI-enabled forecasting supports 
timely protective measures. For example, Google has developed an AI-based tool utilising 
satellite imagery and short-term weather forecasts to provide riverine flood predictions up 
to seven days in advance, outperforming current state-of-the-art modelling systems 
(Nearing, et al., 2024). This tool may be especially useful in emerging market and developing 
economies by enabling better prediction of water levels in rivers where monitoring is scarce 
or absent. 

AI is increasingly being used for asset inspection and damage detection after weather events, 
relying on drones (including autonomous drones), satellites and fixed cameras imagery. A 
growing number of companies offer these solutions for energy infrastructure, including 
power grids and solar plants, and report significant inspection cost reductions. Utilities 
worldwide are adopting these technologies, such as Florida Power & Light in the 
United States, National Grid in the United Kingdom and Enedis in France. These tools could 
prove to be particularly beneficial to gain access to remote zones, especially in emerging 
market and developing economies. For example, the Vietnamese TSO, the National Power 
Transmission Corporation, recently deployed drones and fixed cameras coupled with AI to 
conduct transmission network inspections. It drastically cut the time needed per inspection 
from several hours to just 20 minutes. Similar platforms are also employed to monitor 
vegetation around powerlines, which is considered to be one of the largest O&M expenses 
for most utilities (Charles, et al., 2020). High-risk corridors are detected, and maintenance 
schedules are optimised by AI tools utilising satellite, drone and camera data. Case studies 
reported significant reductions in inspection costs, along with a decrease in tree-related 
outages of more than 30% (Aidash, 2024).  
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AI-driven approaches are also being used for wind turbine inspections. Methods typically 
combine AI with drone imagery or other methods, such as ultrasonic testing, vibration 
monitoring and thermal imaging. Among these, drones stand out as one of the most 
advanced and promising approaches. They enable blade fatigue testing, damage detection 
and structural reliability analysis at accuracies exceeding 90% (Memari, et al., 2024) and can 
pinpoint defects as small as 15 centimetres (Movsessian, García and Tcherniak, 2021). 
Replacing rope-access inspections with drones can reduce related costs by up to 70% 
(Khristopher, Crowther and Barnes, 2021). Beyond the cost savings, these AI-enabled 
inspection technologies significantly lower accident risks, enhance prediction accuracy and 
boost overall productivity. 

3.7 Barriers to the adoption of AI for energy optimisation 
AI technologies already offer major potential benefits across the energy system, but their 
implementation faces a range of hurdles (Table 3.9). The pace of uptake of AI applications 
will vary according to the benefits they bring but also according to the case-specific barriers. 
We explore some of these potential limiting factors here. 

Table 3.9 ⊳ Potential barriers to the adoption of AI applications in energy 

Barrier Potential impact on success Effort to overcome 

Access to data ● ● 
Access to digital infrastructure ● ● 
Skills and training ● ● 
Regulation ● ● 
Security ● ● 
Culture and social trust ● ● 

● Low   ● Moderate   ● High   ● Very high 

Access to data represents a significant barrier to unlocking AI’s potential in the energy sector. 
Large parts of the energy system are fragmented – individual companies and organisations 
do not necessarily share data and may be reluctant to do so for confidentiality or competitive 
reasons. Establishing data-sharing mechanisms, such as standards, data spaces and 
consortia, is a means to overcome this.  

In tandem with data access is the issue of data quality, since this impacts the quality of the 
AI model that can be produced. Data quality is often thought of in terms of completeness, 
coverage, accuracy and timeliness. AI can be used to address quality issues, such as 
improving completeness by inferring data points to fill in gaps. However, the inferred data 
could have inaccuracies and be less valuable than the true measurements that AI models 
ideally consume. High-quality data can be expensive to produce, involving resource-intensive 
work, such as mapping together disparate datasets or cleaning out noise. High-quality data 
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are likely to be less accessible, in part due to their innate value but also since their worth 
could be eroded if used to train AI models.  

The extent of digitalisation varies greatly by sector and region, placing some at a 
disadvantage in the push to gain from AI’s potential benefits (see Chapter 5). A low level of 
digitalisation can impact not just data availability but also the ability to implement AI 
applications. This is particularly important for applications that require network 
communications to access remote computing resources. Developing economic regions, such 
as parts of sub-Saharan Africa, have built mobile networks, bypassing the development 
phase of building a high-bandwidth fibre optic telecommunication system. This potentially 
places them at a disadvantage as it limits their ability to accommodate the information 
bandwidths to and from data centres that some AI applications require. Furthermore, a lack 
of data centre developments in some regions causes reliance on long-distance 
communication to far-away locations, with inherent latency issues. The alternative of 
communications via satellite may be more costly and restrictive. 

AI applications require a skilled workforce familiar with handling data and building models 
tuned to the needs of the energy system (see Chapter 5). Cross-pollination of knowledge and 
skills between the technology and energy sectors will accelerate progress. There has already 
been some beneficial exchange in parts of the energy sector where digitalisation and large 
data quantities have provided energy operators with an incentive to sharpen their 
technology skills (e.g. in the oil and gas sector). However, other parts lag behind. 

The implementation of AI solutions will face regulatory hurdles. This is already evident in 
several areas, such as the restrictions placed on autonomous vehicle testing. The scale of 
regulatory barriers will vary by geography, sector and use. Barriers in areas where safety or 
security could be compromised (such as aviation or electricity networks) are likely to be 
particularly stringent. The desire to preserve some element of human control is likely to 
persist. Where AI is deployed in connection with consumer end-use devices and personal 
data, the risk of privacy breaches will need to be considered. Regulators will need to examine 
regulatory and certification processes and, where feasible and beneficial, adjust them to 
enable the application of AI-driven solutions. This will also require the upskilling of 
regulators, including on aspects related to cybersecurity (see Chapter 5). 

A broader challenge that the expansion of AI could face is resistance from a lack of social 
trust. This would especially be the case for applications where there are safety concerns 
(e.g. autonomous vehicles) or the potential for impacts on finances (e.g. building energy 
management). Social trust may also be challenged if the choice of individual consumers to 
opt in or out is not always preserved as AI applications become pervasive. How this evolves 
depends on implementation across all sectors, not just within energy, which will together 
form the overall perception of how AI performs. 
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Chapter 4 

AI for energy innovation 
The potential of AI to accelerate innovation 

 

• Innovation is essential to achieving secure, affordable and sustainable energy. The 
energy sector continues to innovate: from 2010 to 2024, driven by technology growth 
and lower costs, unconventional oil and gas went from 10% to 25% of global oil and 
gas supply; solar photovoltaic (PV) went from 30 terawatt hours (TWh) of annual 
generation to around 2 000 TWh; and electric cars went from 0.01% to over 20% of 
global sales. 

• Innovation takes time. For energy technologies ranging from internal combustion 
engines and air conditioning to lithium-ion batteries and solar PV, time from invention 
to first commercialisation averaged over 30 years, and mass market uptake 20 further 
years. The core technology of today’s artificial intelligence (AI), the artificial neural 
network, took 35 years to progress from prototype to first commercialisation. 

• AI is increasingly central to innovation pipelines. In medicine, AI led to a 45 000-fold 
acceleration in the scientific rate of discovery of the three-dimensional structures of 
proteins, the functional building blocks of human cells.  

• Patent and start-up data suggest that AI-first approaches to innovation are under-
represented in the energy sector. Around 1% of energy-related patents reference the 
use of AI as part of the patented innovation; this share is similar across fossil fuels and 
clean energy. Only 2.3% of energy start-ups have an AI-related value proposition, 
lower than the 7% for life sciences and 4.3% for agriculture. 

• However, many areas of energy innovation are characterised by the kinds of problems 
AI is good at solving: highly complex design spaces, the need to balance performance 
trade-offs for an optimal outcome and rich datasets. For example, the discovery of a 
perovskite that is stable and easy to manufacture could accelerate cheaper and less 
space-intensive solar PV, and yet less than 0.01% of possible perovskite materials 
have been experimentally produced. AI could dramatically accelerate this process.  

• A core challenge of energy innovation is integrating new innovations into complex 
products and new products into industrial-scale supply chains. AI can help here, too. 
A battery gigafactory can produce up to 10 billion data points per day. Analysing these 
with AI models can help to detect faults, predict performance and diagnose problems, 
reducing the risks, costs and timelines for innovative chemistries. 

• Policy has an important role to play in leveraging AI’s potential to accelerate energy 
innovation. A first step is a more comprehensive inventory of promising technology 
areas and available AI tools (models and databases). Public policy should support data 
production and dissemination. AI can dramatically accelerate the phase of hypothesis 
generation: investment in high-throughput or automated laboratories, and faster 
regulatory processes, will be needed to ensure testing and certification keep pace. 

S U M M A R Y  
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4.1 Introduction  

Innovation is a key pillar for achieving various goals, including energy security, climate change 
mitigation, competitiveness and economic growth. In recent years the energy sector has 
witnessed an accelerating pace of change, driven by a virtuous circle of cheaper and better-
performing new technologies and stronger policies incentivising their adoption. 

 In 2010, unconventional oil and gas made up 10% of the global oil and gas supply; today 
their share stands at over 25%, while their production costs per unit energy have fallen. 
Innovations in hydraulic fracturing are starting to spill over into geothermal production, 
potentially opening up much larger, previously uncompetitive resources (IEA, 2024a). 

 In 2010, solar photovoltaic (PV) made up around 5% of global power generation capacity 
additions and only slightly more than 32 terawatt hours (TWh) of annual generation. In 
2024, solar PV accounted for more than half of global capacity additions and produced 
around 2 000 TWh of electricity. This has been facilitated by a more than 70% drop in 
the levelised cost of solar PV, driven by substantial reductions in material intensity, 
improvements in cell efficiencies and huge gains in manufacturing productivity. 

 In 2010, electric vehicles (EVs) made up 0.01% of global car sales and lithium-ion (Li-ion) 
battery prices averaged nearly USD 1 300 per kilowatt hour (kWh). In 2024, they 
accounted for over 20% of global sales and Li-ion battery prices had fallen to 
USD 115/kWh. Innovation delivered new battery chemistries, such as lithium iron 
phosphate (LFP) and sodium-ion, with lower costs and lower use of critical raw 
materials. 

While these gains have been impressive, in several respects, the pace of energy sector 
innovation remains slow. For example, there are sectors, such as aviation and cement, where 
currently there are no large-scale, commercially available low-emissions technologies. 
Innovation is also important for improving energy security, for example as electricity systems 
become more dynamic, distributed and digitised. Innovation is also a core component of 
competitiveness in international markets, and scientific and engineering progress in energy 
technologies can trigger innovation breakthroughs in adjacent economic sectors. Systems 
developed for the in situ performance measurement of wind turbine blades, for instance, are 
being adapted to monitor aircraft wings. Nuclear research has also made important 
contributions to the development of touch screens that underpin the consumer electronics 
revolution. 

Innovation, however, takes time and resources (Figure 4.1). Solar PV, for example, took 
almost 30 years to go from prototype in the 1950s to first utility scale deployment in 
electricity generation in the 1980s. Today, it accounts for 6% of global electricity generation 
(up from 3% in 2020). Lithium-ion batteries took more than ten years to go from invention 
in 1977 to commercialisation in 1991 (Winter, Barnett and Xu, 2018), and a further 30 years 
before electric vehicles made up 5% of the global car market. In the technologies studied in 
Figure 4.1, the simple average of the time from invention to first commercialisation was over 
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30 years, and from first commercialisation to mass market uptake, over 20 years. These 
timelines must be compressed if energy and climate goals are to be met. 

Figure 4.1 ⊳ Innovation timelines for selected energy technologies and 
artificial neural networks 

 
IEA. CC BY 4.0. 

In the past, it has typically taken several decades for an energy technology to go from 
invention to commercialisation and a further 20 years to reach mass market uptake 

Notes: CCGT = combined-cycle gas turbine power plant; PEM = proton exchange membrane; US = United 
States. Invention refers to the first instance of a technology that meaningfully resembles its modern iteration. 
Mass market uptake refers to the time taken to achieve a 20% share of a relevant first-mover market, shown 
in parentheses. PEM electrolysis has not yet achieved that milestone. 

AI is becoming increasingly integral to basic research and innovation. For example, it took 
almost 50 years of global research efforts from scientists to painstakingly map about 0.1% of 
known proteins, which are critical for drug design. However, in 2022, AlphaFold, an AI model 
developed by Google DeepMind, generated accurate structure predictions for over 
200 million proteins, a 45 000-fold acceleration in the rate of discovery.  

Today, there are several examples of AI driving research in energy technologies, but the 
promise still lies mainly in the future. Some of the technologies the future could hold include 
dramatically more energy-efficient carbon dioxide (CO2) capture, long-duration flow 
batteries that are less reliant on – or entirely avoid – critical minerals, and low-cost, highly 
efficient desalination technologies for an increasingly water-stressed world. 

This chapter builds on the extensive work of the International Energy Agency (IEA) in tracking 
energy innovation (IEA, 2020) and aims to provide a systematic understanding of how and 
where AI could accelerate energy innovation. It is structured around four sections: 

 Section 4.2 looks at data from patents and start-up funding to examine the degree to 
which AI is being applied to energy innovation today. 

1875 1900 1925 1950 1975 2000 2025

Artificial neural networks (global)

Internal combustion engines (US)
Air conditioning (US)

Bioethanol cars (Brazil)
Nuclear (France)

CCGT (Japan)
Solar PV (Germany)

Wind electricity (Denmark)
PEM hydrogen electrolysis (global)

Battery electric vehicles (global)
Lithium-ion batteries (global)

Invention to commercialisation Commercialisation to mass market uptake
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 Section 4.3 develops a framework for understanding how AI could accelerate energy 
innovation. 

 Section 4.4 analyses how AI could be applied to accelerate innovation in four critical but 
contrasting energy technologies: batteries, catalysts, carbon capture materials and 
cement. 

 Section 4.5 analyses the policy landscape relating to energy innovation and AI.  

4.2 What can we learn from patents and start-ups?  

Patent and venture capital (VC) funding data provide information about innovation and 
commercialisation in novel technologies (Figure 4.2). Patent filings in both the AI and energy 
industries have surged since 2015, reflecting ongoing technological advances. From 2015 to 
2022, the energy sector added 330 000 patents, 70% ahead of the AI sector. As well as the 
differences in size and scope of the two sectors, this likely also reflects the higher prevalence 
of hardware products among energy sector innovations, making their inventors more likely 
to try to protect the underlying intellectual property.  

Figure 4.2 ⊳ Patents and VC funding by sector 

 
IEA. CC BY 4.0. 

While both AI- and energy-related technologies have seen consistent growth in patents, 
venture capital funding in energy has lagged AI and the broader digital field 

Notes: IPFs = international patent families. The digital sector represents companies whose primary activities 
are centred around the use of digital technologies, including mobile applications, web platforms, Internet of 
Things devices and computer-based solutions. 

However, when it comes to commercialisation – denoted by VC investment flows – the two 
sectors have followed different trajectories. In the last few years, the level of VC investment 
in energy has lagged far behind that of AI. This shift is visible in 2024 investment trends – 
while AI start-ups increased their fundraising to reach one-third of total VC investments, 
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fundraising for energy start-ups declined to less than 10%. The difference is even more 
marked when the broader digital sector is included: since 2020, AI and digital start-ups have 
attracted two-thirds of global VC funding, compared with 8% for the energy sector. 

One reason for the disparity in sectoral innovation may lie in the fundamental differences in 
market structure and innovation dynamics. The energy sector is marked by high barriers to 
entry, such as capital intensity, long project lead times and the need for extensive physical 
infrastructure. These factors disadvantage disruptive new entrants – indeed, 80% of the 
global oil supply still comes from about 400 companies tracing their origins to before the 
invention of the integrated circuit in 1959. As discussed in Chapter 3, upstream energy firms 
make extensive use of data and supercomputing capabilities. These are, however, deployed 
in support of primary business objectives rather than the innovation of novel technologies.  

In contrast, the digital sector operates in a very different innovation environment. Many 
technology start-ups can scale rapidly with relatively low capital requirements. Software-
driven solutions allow for faster iteration cycles, enabling companies to bring products to 
market quickly and adjust to emerging trends. Despite the increased capital investment 
required to train and run consumer AI models, data centre investments are modular and 
easier to redeploy for other uses.  

As a result, recent successful disruptor companies in the energy sector have adopted a faster 
iteration model familiar to the digital industry, including Tesla, CATL, Octopus Energy and 
Mitchell Energy. 

The share of AI-related patents in total energy sector patents can give an indicator of the 
extent to which AI is being used as a tool for energy-related innovation. Between 2020 and 
2022, only around 1% of energy-related patents referenced the use of AI as part of the 
patented innovation. There is little difference in this regard between the clean energy and 
fossil fuel sectors (Figure 4.3). The rate of AI use in energy patents is about one-quarter of 
that in the medical devices and imaging sector. 

Similarly to patents, AI-related start-up funding as a share of total energy sector start-up 
funding gives an indicator of the penetration of AI approaches in energy innovation. In the 
energy sector, this share is around 2% for the period 2020-2024, lower than the 7% share for 
life sciences and the 4% share for agriculture. This is substantially lower than the AI-related 
share of all VC funding (15% between 2020 and 2024) and across start-ups in the digital 
sector (23%). 

The lower shares of fundraising attracted by AI-first start-ups relating to energy compared 
with other technology areas may be attributed to several factors. First, the convergence of 
energy and advanced software technologies, including AI, is a relatively new phenomenon. 
Traditionally, energy infrastructure design and operation have prioritised reliability and 
safety above rapid innovation, leading to a more conservative culture that does not adopt 
the fast-paced, iterative approach common in the AI world. This often results in a dynamic 
where AI expertise is brought into existing energy companies, rather than energy expertise 
driving the creation of new AI-centric ventures. 
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Figure 4.3 ⊳ Share of AI in patents and VC funding by sector 

 
IEA. CC BY 4.0. 

The energy sector has not seen the rapid increase in AI innovation and  
commercialisation that sectors such as digital technologies and medical devices have  

Second, a significant “perception gap” exists. Many companies integrating AI into their 
energy operations or innovation pipelines do not explicitly brand themselves as AI 
companies. An example of this is Mitra Chem, a Li-ion battery cathode manufacturer that 
employs AI approaches to guide innovation. It focuses on its objective of innovating and 
commercialising iron-based battery cathode materials without drawing attention to the 
innovation methodology. This may lead to incomplete data and a potential underestimation 
of AI’s true presence in the sector. Combined with the inherent attractiveness and scale of 
consumer-facing AI applications, these factors may lead investors to overlook the less 
immediately visible applications of AI in energy production and infrastructure.  

Consequently, publicly available data on patents and early-stage funding may be 
underrepresenting the real potential of AI applications in energy. Established companies with 
resources and infrastructure are already developing and deploying AI solutions. Data 
suggests that AI is used to enhance existing energy infrastructure in applications including 
grid management, predictive maintenance, demand forecasting and battery energy trading.  

There is however limited evidence of AI being applied yet to generate innovations embedded 
in products in energy production, storage or distribution. This reinforces the idea that, at 
least for now, AI’s potential in energy is largely being realised through incremental 
improvements to operations rather than through the emergence of entirely new, AI-driven 
product designs. 
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Apply with care: What energy can and cannot  
learn from the AlphaFold revolution 

Proteins are essential for nearly all biological processes. The role of different proteins 
within these processes is determined by their three-dimensional (3D) structures. A more 
holistic understanding of their structures and interactions could revolutionise drug 
discovery. However, experimentally verifying the 3D structure of proteins is very time 
consuming.  

One of the most widely cited AI contributions to innovation is AlphaFold, a protein 
structure prediction model developed by Google DeepMind. This example holds lessons 
for the energy sector. However, it also highlights that care needs to be taken in 
extrapolating innovation success from one sector (biomedicine) to another (energy).  

AlphaFold was trained on the Protein Data Bank (PDB), an open-source repository of 
around 170 000 experimentally determined structures. The PDB was assembled from 
over 50 years of global research efforts but still represented only about 0.1% of known 
proteins. In 2021, AlphaFold generated high-confidence structure predictions for over 
200 million proteins (a 45 000-fold acceleration in the rate of discovery – see Figure 4.4). 
This would have taken until the end of the 21st century using purely experimental 
methods. AlphaFold is equivalent to an extremely rapid search tool for finding a “needle 
in a haystack”, but the process still requires experimental validation.  

Figure 4.4 ⊳ Traditional and AI-accelerated drug discovery performance  

 
IEA. CC BY 4.0. 

AI modelling accelerated the pace of protein structure analysis  
by around 45 000 times 
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Lessons from the biomedical sector highlight broad themes in AI-driven innovation: 

 First, the importance of large, high-quality datasets. AlphaFold's success was only 
possible due to the availability of the PDB, an open-access, high-quality dataset 
assembled over 50 years of global collaboration. 

 Second, the need for rigorous, human-driven validation before deployment. AI 
predictions must be rigorously evaluated to ensure they are accurate and reliable. 
While AI can identify patterns and generate insights at scale, human oversight 
remains essential to assess causality, interpretability and unintended consequences. 

 Third, the challenge of translating AI advances into commercial applications – even 
when AI accelerates discovery or problem-solving, real-world implementation is 
often constrained by technical or regulatory barriers.  

The breakthrough of AlphaFold has generated a huge amount of interest in AI-driven 
innovation (it could be described as the “ChatGPT moment” of the field). While it holds 
important lessons, care needs to be taken in applying the paradigm of one sector to 
another. As we shall see throughout this chapter, the challenges of energy sector 
innovation are sometimes characterised by similar extremely complex searches for a 
“needle in a haystack”: a new material, molecule or enzyme, for example. However, often 
the challenge lies as much, or more, in integrating this new material, catalyst or molecule 
into highly complex products like batteries; integrating new products into large, complex 
and slow-moving industrial supply chains; and concurrently addressing myriad enabling 
conditions, including infrastructure, policy support and consumer preferences. 

4.3 How can AI accelerate solutions to energy innovation 
challenges?  

4.3.1 Overview of the innovation cycle 

Although innovation pathways are complex, they broadly progress through the following 
phases:  

 Applied research focuses on understanding, measuring and manipulating the 
fundamental physical, chemical or biological foundation of a technology. This early 
phase broadly corresponds to Technology Readiness Levels (TRLs) 1 to 4.1 This phase is 
sometimes characterised by the painstaking search for promising molecules, materials 
or chemistries.  

 The outcomes of applied research enable the development of prototypes (TRLs 5-6). A 
key challenge here is the integration of new concepts developed in the laboratory into 
more complex working devices. 

 
1 TRLs are a scale from 1 to 9 used for reporting on the level of maturity of new technologies. Originally 
conceived by the National Aeronautics and Space Administration, they are now widely used as a measure of 
innovation. 
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 Prototypes are then scaled up during the demonstration phase (TRLs 7-8), where full-
scale commercial units are operated in real-world conditions. During this phase, scale-
up can falter under the weight of rising costs and implementation risks.  

 After demonstration, the gap between costs and revenues begins to fall, but new energy 
technologies may still remain unprofitable. However, purchases by early adopters 
(TRL 9) can begin to build a durable market.  

 As products enter the mainstream, their users and manufacturers continue to see 
opportunities for improvement, generating both modest design adjustments and 
additional low-TRL ideas to be tested and scaled up as potential successors. 

In this chapter, the stages of innovation are broadly grouped together into two phases: 
proving (up to TRL 6) and scaling (from TRL 7). 

4.3.2 Integrating AI into the innovation process 

The full extent of the domains of many scientific fields makes exhaustive experimental 
searches impractical. There are, for instance, more potential inorganic compounds with 
four unique atoms than there are people on earth. Historically, researchers have relied on 
laborious and expensive trial-and-error processes to navigate these vast design spaces. For 
example, in developing catalytic synthesis processes to make ammonia – now the second-
most widely used industrial chemical globally – researchers at BASF spent over three years 
systematically screening more than 2 500 catalysts. 

AI can accelerate the search for candidate molecules, materials or chemistries in a number 
of ways (see Figure 4.5): 

 First, predictive AI models can learn from available experimental data on catalyst 
designs, perovskite materials or battery chemistries to make predictions about which 
candidates could meet desired performance characteristics. Examples of this include the 
use of AI models for protein simulation in drug discovery (see Spotlight above).  

 Second, generative AI models can propose novel options (e.g. materials that have never 
been synthesised) that can be explored and tested both computationally and 
experimentally. For example, Microsoft’s MatterGen diffusion model can propose novel, 
stable and unique materials with desirable properties when trained on existing 
databases of relevant materials.  

 Finally, large language models can help scientists access and organise vast bodies of 
academic literature and extract information on existing technologies, approaches and 
candidate designs. 

Once a promising candidate is identified, the AI model’s assessment of its characteristics 
must be validated. This validation can be achieved using high-throughput experimentation 
(HTE), which also closely resembles the approach taken by the BASF designers of the 
ammonia synthesis catalysts: once they had narrowed their pool of materials down to a 
subset of iron-based materials, they developed standardised laboratory-scale reactors and 
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conducted parallel tests across multiple candidates, dramatically accelerating the refinement 
process. Modern HTE is more mechanised and performed on a larger scale but is based on 
the same fundamental principles. 

Figure 4.5 ⊳ Conceptual approaches to searching large solution spaces, 
conventionally and led by AI  

 
IEA. CC BY 4.0. 

AI-led design approaches can use existing information to systematically expand the 
search space to consider more options than could ever be experimentally feasible 

AI can itself be integrated into this process using self-driving laboratories, which represent 
the next step in the evolution of HTE. They use iterative decision making to further accelerate 
the prototyping process. By automating both the execution of experiments and the selection 
of the next set of candidates to test, self-driving laboratories enable continuous, repeatable 
iterations that would be impractical with human-led experimentation alone. The physical AI 
system that guides this process can retrain itself with the outcomes of each experiment, 
guiding the research towards promising directions. The Canadian firm Telescope Innovation, 
for example, has combined robotic automation, process analytics and machine learning to 
demonstrate new production methods for battery materials. 

The A-Lab at the US Government’s Lawrence Berkeley National Laboratory provides a 
compelling demonstration of the potential of self-driving laboratories for accelerating 
materials innovation. This system synthesised 41 materials – initially predicted by the 
Materials Project, an open-access database of material properties – without prior knowledge 
of their structure by leveraging a knowledge base of more than 24 000 scientific publications. 
The entire workflow, from synthesis to characterisation, was automated through robotic 
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handling, with the system autonomously adjusting parameters when experiments failed. This 
iterative approach shortened the feedback loop between hypothesis and characterisation 
from weeks to days, ensuring that underperforming experiments contributed more 
effectively to the development cycle (Szymanski, et al., 2023). Although very promising, these 
tools have yet to reach the stage of complete autonomy, and human researchers are still 
required for comprehensive characterisation, and purity and defect control (Peplow, 2024).  

Despite their transformative potential, several significant barriers limit the widespread 
uptake of self-driving laboratories in energy innovation. The most immediate challenge is 
cost – developing a self-driving laboratory requires substantial investment in both robotics 
and machine learning infrastructure, with costs potentially reaching tens of millions of 
dollars. Given the field’s nascent state, these systems remain largely bespoke, further 
increasing the complexity and expense of implementation. The quality and design of 
experiments – determining which variables to test and how to structure the exploration of 
the solution space – remain heavily dependent on human expertise and intuition. 

4.3.3 What energy technology areas will be accelerated by AI? 

Despite the substantial opportunities for AI to accelerate energy innovation, its impact across 
different fields of scientific research will vary. Technology areas most suited to high-impact 
applications of AI in the innovation process include: 

 Diverse solution spaces that have high levels of combinatorial complexity that cannot 
be explored by trial-and-error experimentation but for which a large number of 
potential candidates are well-described in the training data. Catalyst design and 
pharmaceutical sectors are thus obvious candidates for AI-powered innovation because 
of the permutational complexity of different atomic combinations.  

 Structured and high-quality data for building effective AI models. For example, 
perovskite materials hold promise for solar PV applications, with over 10 million possible 
perovskite structures. However, only about 1 000 have been synthesised, limiting the 
training data available for AI models. While machine learning can estimate properties of 
unexplored perovskites, its reliability remains constrained by the low availability of high-
quality, real-world data.  

 Straightforward testing and verification. Training datasets are, by their nature, 
incomplete and often exclude important metrics, such as energy efficiency and 
manufacturing costs. AI-proposed reverse osmosis membranes, for instance, can be 
tested using standard seawater in laboratory conditions; by comparison, plastics 
recycling is complicated by the wide variety of potential input materials, which are 
difficult to replicate prior to deployment. 

 A receptive market and infrastructure environment that requires neither changes in 
regulation nor behaviour and does not need investment in new assets in adjacent 
sectors. Applying AI to technology problems that are likely to yield “drop-in” solutions 
could produce faster impacts than applying AI to energy sector challenges that face 
more complicated market conditions  
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Table 4.1 applies these four criteria to key energy technology areas, showing specific 
examples of innovations that could be transformative within those areas, and highlighting 
the extent to which the innovation challenges correspond to the criteria. Many energy 
technology challenges have a high degree of complexity, but many also lack adequate data 
for AI to process that complexity. As with the scale-up of new energy technologies today, 
almost all products of AI-driven innovation will face some hurdles in incorporation into 
existing, interconnected energy systems.  

Table 4.1 ⊳ Illustrative assessment of the potential for AI to accelerate 
progress against selected key energy technology challenges 

Technology challenge 
Solution 

space 
complexity 

Structured 
data 

availability 

Pre-
deployment 
verification 

Integration 
and  

scaling 

Synthetic fuels - Catalysts with high efficiency, 
selectivity and stability ⬤ ⬤ ⬤ ⬤ 
Hydrogen electrolysis - Low-cost, highly efficient and 
durable electrolyser catalysts ⬤ ⬤ ⬤ ⬤ 
Carbon capture, utilisation and storage - Stable CO2 
capture materials with high affinity and low energy 
penalty 

⬤ ⬤ ⬤ ⬤ 

Electric vehicles - Novel battery chemistries using 
cheap materials (e.g. sodium-ion, solid-state) ⬤ ⬤ ⬤ ⬤ 
High-temperature heat storage - Stable phase change 
materials with high conductivity and latent heat ⬤ ⬤ ⬤ ⬤ 
Desalination - Productive, stable and energy efficient 
reverse osmosis membranes ⬤ ⬤ ⬤ ⬤ 
Advanced biofuels - Improved performance of 
enzymes and yeasts for 2nd/3rd generation biofuels ⬤ ⬤ ⬤ ⬤ 
Solar photovoltaics - Efficient, stable, scalable 
perovskite cells without critical mineral inputs ⬤ ⬤ ⬤ ⬤ 
High-temperature heat pumps - Identification of 
working fluids which phase change at high 
temperatures 

⬤ ⬤ ⬤ ⬤ 

Long-duration energy storage - Cheaper, efficient 
redox-flow or other long-duration batteries ⬤ ⬤ ⬤ ⬤ 
Decarbonised cement - Cement production from 
calcium silicate raw materials ⬤ ⬤ ⬤ ⬤ 
Plastics recycling - Energy-efficient upgrading of 
pyrolysis oils ⬤ ⬤ ⬤ ⬤ 

Effective nuclear fusion - Fusion reaction control ⬤ ⬤ ⬤ ⬤ 
⬤ High     ⬤ Medium    ⬤ Low 

Note: Green indicates a high degree of alignment between the criteria and the technology challenge, 
suggesting AI is more likely to have meaningful impact in the sector; orange indicates some alignment, and 
that innovation in the sector could benefit from AI; red indicates low alignment, suggesting a possible hurdle 
to AI deployment. 
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4.4 Focus on four selected technology areas 

This section provides a more detailed focus on four technology areas that have the potential 
to be improved by AI: batteries, synthetic fuel catalysts, carbon storage materials and 
cement. Of course, the opportunities to deploy AI in technology and material design stretch 
far beyond these four focus areas; they are selected as representative examples of how AI 
might be deployed for innovation and the potential barriers to deployment. 

4.4.1 Batteries 

Modern batteries exemplify both a rapidly advancing technology and a major industrial 
product. Continuous advancements in the field are pushing the boundaries of performance 
and efficiency, but AI could further enhance them. 

The deployment of batteries in the transport and power sectors brings clear environmental 
advantages (IEA, 2024b). However, the growth of battery demand hinges on low prices and 
high performance to make new technologies like electric cars cheaper or more attractive 
than their equivalent conventional technologies. Beyond performance metrics, supply chain 
concentration has also raised security concerns. 

New battery technologies include solid-state, sodium-ion, lithium-sulphur, iron-air and 
redox-flow batteries. Some of them, like iron-air and redox-flow batteries, target different 
applications than established Li-ion technologies, such as longer-duration storage. Others, 
like solid-state and lithium-sulphur batteries, could also accelerate adoption in sectors that 
would benefit from or require higher energy densities, such as long-haul electric trucks or 
short-haul shipping and aviation. Technologies like sodium-ion batteries aim to reduce 
dependence on lithium. However, improvements in already widely commercialised 
technologies can also have substantial and rapid market impacts, and should not be 
overlooked by policy makers. 

Core scientific challenges to battery development 

Batteries are highly complicated devices, whose operation depends not only on the materials 
employed but also on their exact combination and interactions. Their performance depends 
on design at several scales – from the crystal structure of the active materials at the 
nanometre scale and the microstructure of the electrodes, up to the cell and battery pack at 
the macroscale. Innovation in batteries is an exercise in trade-offs, and a one-size-fits-all 
technology that can revolutionise the sector is unlikely. However, AI can be applied to and 
accelerate a large spectrum of battery innovations, from materials discovery to production 
and battery operation optimisation. 

The interactions between different materials, scales and battery operations create an 
optimisation space with hundreds of dimensions, the entirety of which is practically 
impossible to navigate. Researchers, therefore, use prior knowledge and chemical intuition 
to study only the options they believe to be the most promising. AI tools, however, are well-
positioned to handle a far greater diversity of data types and scales. 
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AI applications in battery innovation 

AI is already advancing battery innovation (Figure 4.6), from materials discovery and testing 
to performance predictions, production optimisation, battery management system 
optimisation and end-of-life management. 

It is challenging to discover new battery material contenders that can reach commercially 
viable performance (energy density, rate and cycle life), be practically synthesised at scale 
and be cost competitive. Materials discovery is one of the most significant areas of AI 
application in battery development. It includes the design of cathodes, anodes, and liquid 
and solid electrolytes. Many examples of AI deployment already exist. SES AI developed a 
new cylindrical Li-ion cell using a new electrolyte discovered by its AI system, with improved 
low-temperature operation, durability and safety, with key applications in drones and 
robotics (SES AI, 2025a). The company also recently signed USD 10 million worth of contracts 
with automotive original equipment manufacturers to develop AI-enhanced lithium-metal 
and Li-ion batteries for EVs (SES AI, 2025b).  

Figure 4.6 ⊳ AI applications for batteries 

 
IEA. CC BY 4.0. 

The key applications for AI in batteries innovation revolve around six core areas along the 
innovation cycle, from materials discovery through to operational optimisation 
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Aionics, another AI battery start-up, developed the world’s first AI-powered battery design 
platform to screen thousands of candidate materials in seconds for potential new electrolyte 
designs (Aionics, 2024). Microsoft and Pacific Northwest National Laboratory used AI to 
screen over 30 million materials for their potential use as solid electrolytes in less than a 
week and synthesised the most promising ones (Microsoft, 2024; Chen, C. et al., 2024). IBM 
Research has used AI to develop a new chemistry free of nickel and cobalt but has provided 
little detail on the chemistry (IBM, 2025). Despite intense research activity, AI has yet to 
demonstrate significant breakthroughs of new battery materials with clear data-evidenced 
success, and the path to commercialisation remains long.  

AI also brings major opportunities for automation in both battery testing and materials 
analysis. In combination with robotics, AI has been utilised to greatly increase the throughput 
of testing and analysing new material and electrolyte samples (Adarsh, et al., 2022). 
Automation is seen as a major area of potential for AI to accelerate battery development 
timelines. 

The computational modelling of batteries and materials has been a powerful tool for battery 
development, primarily on two levels. First, at the material level, density functional theory 
(DFT) can be used to discover new materials and predict their properties. Second, mesoscale 
cell-level modelling can predict the behaviour and performance of novel chemistries in 
realistic cell formats before large-scale prototypes are made. AI can greatly enhance these 
modelling efforts by increasing computational efficiency for modelling complex systems 
(Yao, et al., 2022; Magdău, et al., 2023; Jie, et al., 2019). 

Factories of 50 gigawatt hour capacity can produce up to 10 million cylindrical or hundreds 
of thousands of prismatic EV battery cells per day,2 generating vast and immensely valuable 
datasets with hundreds to thousands of data points per cell. AI-based analytics are already 
part of the toolkit used by the leading incumbent manufacturers and are becoming essential 
to be competitive. For example, the world’s largest battery manufacturer, CATL, uses AI for 
image-based defect analysis on its most advanced production lines (CATL, 2025). This 
approach enables the early detection of defects and their root causes, improving production 
yields and reducing scrap rates, which are key scale-up challenges for new players (Milne, 
John and Novik, 2024).  

AI can also have a significant impact on battery diagnosis and prognosis. This includes 
improving cycle-life and performance prediction, enhancing failure forecasting, facilitating 
the design of more precise warranties, anticipating maintenance and reducing costs for 
manufacturers (Rahmanian, et al., 2024; Cao, et al., 2025). On the diagnostic side, AI can 
facilitate the analysis of failed cells to pinpoint failure modes and support their repurposing 
in second-life applications or recycling (Tao, et al., 2023). Finally, during battery operation, 
AI can play an important role in optimising battery management systems to ensure longer, 
safer and more efficient performance (Attia, et al., 2020).  

 
2 Assuming an average plant utilisation factor of 85% over the year, a cell voltage of 4 volts and cell capacity 
of 60 ampere hours (prismatic) and 3 ampere hours (cylindrical). 
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Other battery innovation barriers 

Battery production relies on complex supply chains, spanning from mineral extraction and 
refining to the production of key components, such as cathode active materials, additives, 
electrolytes and separators. Different battery chemistries require distinct supply chains, and 
establishing one that meets the industry’s performance, quality and safety standards can 
take up to a decade and require significant investment. 

The many industrial applications of batteries create the additional challenge of translating 
AI-accelerated laboratory results to an industrial scale. Laboratory-scale tests are often free 
of the key limitations that govern practical applications, which can lead to excessively 
optimistic claims or over-extrapolation, which can hurt investors and the image of the 
industry as a whole (Frith, Lacey, and Ulissi, 2023). 

A range of elements are needed in the battery sector to foster AI in battery research (El-
Bousiydy, et al., 2021): more transparent and reproducible testing; standards in reporting 
experimental data; a sufficient number of tests to assess their statistical relevance; and 
accessible databases (Open Source Battery Data, 2025; Ruifeng, et al., 2025; Haowei, et al., 
2023; Shengyu, et al., 2025). However, a key challenge is that some of the AI applications in 
battery innovation that are likely to have the highest impacts, such as improving production 
efficiency, are located closer towards the commercialisation part of the innovation process, 
which may limit incentives to build open datasets. 

Innovation timeline compression 

The identification and testing of new battery materials can take many years. AI-driven 
approaches, combined with HTE and self-driving laboratories, have the potential to reduce 
this timeline by up to one order of magnitude – potentially cutting it down to just a few 
months (The Chemical Engineer, 2024; Chen, et al., 2024). However, the effectiveness of AI 
in materials discovery depends heavily on the availability of high-quality data, which must 
first be collected through laboratory research or computer modelling. Also, discovering new 
and promising materials is only the first step. The main cathode materials currently used in 
EVs and battery storage, nickel manganese cobalt oxides (NMC) (Liu, Yu, and Lee, 1999) and 
lithium iron phosphate (LFP) (Padhi, Nanjundaswamy, and Goodenough, 1997), were both 
discovered more than 25 years ago, and it took about a decade before they reached large-
scale commercialisation.  

Scaling up battery production and industrialisation is complex, slow and capital intensive (see 
Figure 4.7). To meet the stringent requirements of the auto industry, battery manufacturers 
must be capable of delivering large volumes of high-quality cells with minimal defects (fewer 
than 10 defective cells per million). To achieve quality metrics of safety, performance and 
manufacturability, tens of thousands of samples need to be produced across a range of 
testing phases (from A- to D-samples) in which different metrics are assessed. Advancing 
from the smallest to the largest testing phases can take several years, or even up to a decade 
for smaller, less capital-intensive start-ups or batteries requiring new manufacturing 
processes. Battery production also requires a complex supply chain involving dozens of 
suppliers, and delays and bottlenecks in securing materials at scale can further impede 
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industrialisation and commercialisation. In addition, after having reached commercial scale, 
battery producers must still undergo a rigorous production part approval process (PPAP) to 
serve the automotive sector, which can take up to an additional year. While AI and 
automation can streamline innovation production, stringent safety and performance testing 
requirements (from A-samples to PPAP), along with the development of the necessary supply 
chain, are likely to remain a major bottleneck in bringing new products to market.  

Figure 4.7 ⊳ Potential to accelerate battery innovation with AI 

 
IEA. CC BY 4.0. 

AI can decrease the time for materials discovery and increase production efficiency once 
at commercial scale – but bringing new products to industrial scale will remain challenging 

4.4.2 Catalysts for synthetic fuel production  

Several sectors remain dependent on hydrocarbon fuels due to their high energy density, 
including aviation, shipping and long-distance trucking. Transitions to low-emissions energy 
systems will require substituting these fuels. While electricity is making inroads, including in 
long-distance trucking, energy-dense fuels are likely to be indispensable for some use cases, 
such as aviation. One option is biofuels, but sustainability concerns limit the total volume of 
available biomass feedstock. An alternative is synthetic hydrocarbons, made by combining a 
climate-neutral carbon source with low-emissions hydrogen.  

Almost no low-emissions synthetic fuels are used today. In strong climate mitigation 
scenarios, synthetic fuels play a major role, for example as sustainable aviation fuel 
(Figure 4.8). Existing sustainable aviation fuel production relies on the hydroprocessed esters 
and fatty acids (HEFA) pathway, but this pathway is constrained by the availability of biogenic 
feedstock, necessitating alternative chemical processes that can produce synthetic fuels 
from a broader range of carbon sources. These alternatives include Fischer-Tropsch (FT) 
synthesis, which combines hydrogen and carbon monoxide to form long hydrocarbon chains. 
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Figure 4.8 ⊳ Bio- and synthetic kerosene production under today’s policy 
settings and a pathway incorporating national ambitions, 
2023-2050 

 
IEA. CC BY 4.0. 

Although HEFA pathways dominate current production, synthetic approaches (FT and ATJ) 
play an increasingly important role in achieving climate pledges 

Notes: FT = Fischer-Tropsch synthesis; ATJ = alcohol-to-jet; HEFA = hydroprocessed esters and fatty acids. 
National ambitions include targets made by countries for the energy sector, the climate, and net zero 
emissions ambitions. 

Core scientific challenges to catalyst development 

FT synthesis is very energy intensive. CO2 needs to be reduced to carbon monoxide (CO). 
Because CO2 is chemically inert, high temperatures or high voltages are needed to push the 
reaction forward, which creates energy losses that make even state-of-the-art approaches 
very inefficient. Current state-of-the-art FT processes involve energy losses of around 30%. 
Better catalyst designs narrow the gap between the energy needed to produce synthetic 
fuels and the energy recovered when those fuels are used. 

Beyond breaking up the inert CO2 molecule, catalysts are also needed to reformulate the 
reactants into long hydrocarbon chains. Historically, FT synthesis has not targeted the 
production of aviation fuel specifically, which is made from longer carbon chains than 
gasoline. Achieving a high degree of selectivity towards the right chain length is directly 
related to the product cost, as it makes more efficient use of the input feedstock, i.e. CO2. 
Sustainable sources of CO2, such as that extracted directly from the atmosphere, are 
expensive, so more efficient use of CO2 inputs is critical to lowering FT synthesis costs. 

However, achieving the right distribution of chain lengths is complicated because it depends 
on the affinity between the carbon compound and the catalyst surface – too weak, and the 
carbon chains will be too short; too strong, and they will make heavy waxes that are not 
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useful fuels. More selective catalysts are often less reactive. To compensate, larger and more 
expensive equipment is needed to ensure all the feedstock is converted into product, 
creating a difficult trade-off between selectivity and conversion.  

There are many other complications for researchers: 

 The combinatorial space is large because different intermediate molecules can be used 
on the path between CO2 and synthetic fuels, performed in single or multiple reactors. 

 Catalyst performance depends not only on the metal or alloy used as a catalyst but also 
on the support structure, further expanding the potential design space.  

 Many catalysts become deactivated easily, so stability needs to be characterised and 
understood.  

 Promising performance is sometimes only achieved using precious metals, but the 
performance improvement may not justify the material costs.  

Designing better catalysts for FT synthesis could lead to lower energy and capital costs, but 
there is a huge design space and multiple and often conflicting optimisation criteria. 
Conventional approaches are time consuming and expensive. 

AI applications in catalyst R&D 

Applied researchers in the catalyst sector are already making substantial use of AI, but there 
is potential to go much further. Integrating different types of AI into the different phases of 
the design process is needed to unlock its full value.  

The most common existing use case for AI in the sector is to predict catalyst performance at 
the molecular level. This is enabled by the performance of traditional quantum physics-based 
modelling approaches, such as density functional theory (DFT). Although DFT is extremely 
computationally expensive and cannot be deployed on a large scale, it is well suited to 
producing training datasets for predictive AI. These predictive AI applications, which are 
usually based on machine learning or neural networks, are hundreds or even thousands of 
times faster at estimating catalyst performance at a molecular level than DFT. The automated 
Materials Discovery for Electrochemical Systems (AutoMat) tool from US researchers, for 
instance, accelerated some catalyst design calculations by a factor of almost 200 – from 
hours to seconds – by deploying predictive models trained on DFT calculations (Annevelink, 
et al., 2022). The Material Generation with Efficient Global Chemical Space Search (MAGECS) 
tool from the Key Laboratory of Quantum Materials and Devices, when applied to alloy 
electrocatalysts, generated over 250 000 structures, from which five were synthesised and 
demonstrated to have high performance at the laboratory scale (Song, et al., 2025). 

More advanced uses than performance prediction are beginning to be reported. These draw 
from techniques developed in biochemistry: generative models are trained on existing data 
to propose entirely new candidate catalyst materials that are likely to meet the pre-specified 
performance criteria. 
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Training data are widely and openly available. The Open Catalyst Project, created by Meta 
and Carnegie Mellon University, contains data for 19 000 molecules in 1.3 million different 
configurations, rigorously calculated using DFT. The dataset has been used to train predictive 
models to estimate the activity of catalyst surfaces and how tightly different molecules bind 
to those surfaces. Similarly, the Catalyst Hub reports detailed information relating to over 
100 000 catalytic reactions calculated using DFT.  

Although these open-source data are useful, the presently available training data remain 
incomplete: 

 The mesoscale structure and porosity of the catalyst support can affect performance but 
are not captured by DFT simulations at the molecular scale, which make up the majority 
of open-source data.  

 Where experimental data beyond the microscale are available, they are not present in 
sufficient volumes to train deep-learning modules, although AI tools that are less data-
reliant can be deployed in some contexts.  

 Some materials are not well represented in existing data, such as FT synthesis catalysts. 
Many machine learning approaches applied to FT synthesis have relied on datasets of 
fewer than 200 catalysts, which lack the richness to assess a wide array of performance 
characteristics.  

Because of these limitations, laboratory validation is generally needed to assess the broader 
suite of catalytic properties at the mesoscale for materials proposed by generative AI. Self-
driving laboratories can accelerate this phase: for the development of hydrogen catalysts, 
robots have been used to search for proposed molecules, guided by predictive AI approaches 
that can minimise the number of experiments needed to find the best performers. Although 
expensive and time consuming to build initially, these self-driving laboratories can reduce 
the research time by a factor of 1 000, delivering results in days instead of years. However, 
these closed-loop experiment designs are more complex to deploy in applications like FT 
synthesis because the high temperatures and multiple phases present make robot design 
more complex.  

Even where AI models can effectively propose and verify new catalyst designs with high 
efficiency or selectivity at the laboratory scale, it is complex to translate the predicted 
performance outcomes at an industrial scale. Predictive AI can eventually help bridge the 
gap: given adequate operating data, predictive AI can be trained to model catalyst 
performance at the scale of real-world industrial applications.  

Other innovation barriers in catalysis 

Producing synthetic fuels is inherently an energy-intensive process, and there are 
thermodynamic limits on how much more efficient it can become. Compared to production 
based on current state-of-the-art technology, even very much improved catalysts could at 
best halve energy consumption. Lower energy consumption can translate into lower costs, 
but the costs of the input CO2 and upfront capital costs will remain large. The policy 
framework is therefore critical to increasing the scale of synthetic fuel deployment. Carbon 
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prices and synthetic fuel mandates, as in the European Union, can improve the business case 
for investment. Because room for improvement is limited by the energy demands of the 
process, the catalyst design of synthetic fuels may only slightly accelerate the scaling of 
synthetic fuel deployment, even though it has significant potential to improve research 
during applied science and prototyping phases (Figure 4.9). 

Figure 4.9 ⊳ Innovation acceleration from AI in the production of synthetic 
fuels 

 
IEA. CC BY 4.0. 

There are many catalytic reactions reported in open-source data that AI can  
leverage to accelerate innovation, but investment remains a hurdle to scaling up 

Although AI can be helpful in identifying catalysts with improved performance, those 
catalysts themselves need to be synthesised, which can be a costly and complex process. This 
process is quite different from assessing the performance of the catalyst itself but may also 
be subject to improvement from AI. In some cases, it is not possible to synthesise the 
molecules proposed by generative AI. 

4.4.3 CO2 capture materials 

Carbon capture, utilisation and storage (CCUS) has important use cases across power 
generation, industry and hydrogen production, and the removal of historical emissions from 
the atmosphere. It can also be used to provide CO2 from a sustainable source for the 
production of chemicals and synthetic fuels (see Section 4.4.2). Current deployment of CCUS 
is low, with annual capture of only around 50 million tonnes of CO2, or only 0.1% of global 
emissions from the energy sector. Innovating new materials could reduce the process energy 
consumption and costs associated with CCUS; this section considers how AI could accelerate 
the development of those materials. Discussions of how AI could be applied to optimise 
complex engineering projects are captured in Chapter 3. 
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Catalyst design is a complex research area that 
can advance synthetic fuel production. 

AI has substantially accelerated the innovation 
proving phase by enabling quick assessment of 
open databases, reducing research timeframes.

AI could slightly accelerate the innovation 
scaling phase, but without policy support it is 
challenging to make a business case for 
synthetic fuels even with the best catalysts.

AI can find catalysts thousands of times faster 
than human researchers – but this alone may 
not be enough for technology uptake.Proving – costs, risks and time
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Core scientific challenges to carbon capture materials development 

The fundamental challenge of carbon capture is to extract pure CO2 from gas mixtures in 
which the CO2 itself is sometimes very dilute. New carbon capture materials therefore need 
to strike a delicate balance. On the one hand, they need to attract CO2 sufficiently strongly 
so that they do not collect other gases like nitrogen. On the other hand, the stronger the 
attraction to CO2, the greater the regeneration energy required to subsequently release the 
CO2 so that the material can be continually reused and the captured CO2 permanently 
sequestered. 

Existing materials do not strike the optimal balance and therefore CCUS is, at present, a 
capital expenditure (CAPEX)- and energy-intensive process. Current performance is several 
times more energy-intensive than the theoretical minimum (Figure 4.10). Innovation is 
needed to find capture materials that are highly selective to CO2 and have low regeneration 
energy needs while performing well in the specific contexts of different energy sector 
applications.  

Figure 4.10 ⊳ Best-in-class energy consumption for CCUS technologies 
by context  

 
IEA. CC BY 4.0. 

The efficiency of CCUS technologies has been improving 
 but remains far from the theoretical limit 

Notes: GJ per t CO2 = gigajoules per tonne of carbon dioxide; DAC = direct air capture; NG = natural gas. Market 
refers to commercially available solvents. Lab refers to the best materials reported in the academic literature. 
Theory refers to the thermodynamic minimum energy demand, which is shown as a work equivalent. If 
supplied as heat, this energy demand could be significantly higher. Solid sorbent technologies typically use 
lower-quality heat than liquid solvents for DAC.  

Source: IEA based on data from An, et al. (2023). 
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 CO2 sources – both the atmosphere and point sources like flue gases – have low densities, 
meaning equipment to process them needs to be large and CAPEX-intensive.  

 The composition of real flue gas streams is variable by application and over time; 
materials that perform well on more concentrated streams from coal gas plants  
(10-15% CO2) may be less effective on more dilute streams from natural gas power 
plants (4-5% CO2) and less effective again in direct air capture (DAC) (about 0.04% CO2).  

 Often, the release of CO2 from the material in which it is captured, and thus the recycling 
of that material for further use, requires high-temperature heat. Availability of the 
required heat can be limited on industrial sites, requiring auxiliary boilers that further 
increase CAPEX and operational costs and pose logistical challenges on space-
constrained brownfield sites.  

 Existing CO2 capture materials like monoethanolamine are corrosive and degrade under 
the high temperatures needed for solvent regeneration.  

Because of these challenges, progress to date has been slow. While there have been 
incremental improvements in the energy consumption of technologies based on commercial 
capture solvents (from around 4 megajoules per kilogramme of CO2 [MJ/kg CO2] to 
2.3 MJ/kg CO2 for capture from natural gas), development in the past two decades has not 
led to step changes in performance. 

Alternative capture processes that do not require high-temperature heat to operate, such as 
solid adsorption on metal organic frameworks (MOFs) and membrane separation, could offer 
a step change in performance. This is particularly needed for processes that capture directly 
from the air, for which the minimum work of CO2 separation is the highest. The search space 
for these materials is very large – at least 1 million MOFs have already been proposed in 
silica, and there is significant space for further exploration (White, et al., 2024). 

AI applications in CO2 capture materials innovation  

AI approaches have already been widely deployed to improve solvent design in the amine 
absorption processes that dominate existing approaches to CCUS. The design of amine-based 
processes is not trivial: the solubility properties of CO2 in amine solutions are complex, and 
the facility design involves a significant amount of heat integration and recycling.  

Typical AI approaches have used predictive models to substitute for more computationally 
intensive process simulations. These process simulations can be used to generate training 
data to improve the performance of the AI model. However, to date, these models have 
generally focused on relatively small training datasets, which has only allowed for partial 
characterisation of the candidate molecules. For instance, the MDLab created by IBM 
Research applied machine learning approaches to integrate existing open-source datasets 
for amines used in CO2 capture with broader proprietary chemical databases to identify a 
wider range of candidate molecules. However, the training dataset of amines that had been 
tested for CO2 capture contained only 167 molecules, which limited the output of the trained 
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model to estimates of absorption capacity and not other key performance metrics like 
regeneration energy. 

Beyond amine-based technologies, MOFs are less developed but have significant potential 
as a CO2 capture material. They are a type of advanced material whose properties 
(e.g. surface area, pore size and reactivity) can be precisely controlled by changing the 
constituent molecules and crystal structure. Computational data on MOFs are widely 
available in general materials databases, and the Open DAC 2023 Dataset produced by Meta 
and GeorgiaTech focuses on MOFs specifically, including around 9 000 potential candidates 
(Sriram, et al., 2024). However, datasets for MOFs produced exclusively by means of 
computer modelling may include high rates of chemically invalid structures that are not 
useful for training AI models (White, et al., 2024; Friedman, 2024). 

Recent advances in this field have seen the deployment of generative AI models. The 
Argonne National Laboratory proposed a workflow that generated 120 000 MOFs using AI 
and then used a range of predictive AI approaches and conventional computational 
chemistry to identify the top-performing candidates with valid chemistries (Park, et al., 2024); 
this process is similar to that used for catalysts as described in Section 4.4.2. The Korean 
Advanced Institute of Science and Technology has developed a large language model called 
ChatMOF, which can interpret textual inputs and propose MOFs that meet certain property 
specifications (Kang and Kim, 2024). These techniques have manageable computational 
loads, and the entire training and inference process can be done using only conventional 
cloud computing. Generating and estimating the properties of entire MOF datasets takes in 
the order of hours to days, which represents a significant acceleration compared with the 
approximately 100 000 MOFs that have been experimentally synthesised in the last 50 years 
of academic research and which represent only a small fraction of the total number of 
feasible MOFs.  

Although the advances in material design facilitated by AI have been impressive, the training 
datasets report molecular CO2 affinities and not actual CCUS plant operating data. Some 
open-source datasets that report these data are beginning to become available from publicly 
funded sources like Technology Centre Mongstad in Norway and the National Carbon 
Capture Center in the United States. However, these only include operating CCUS facilities 
that are based on solvents and do not include advanced solid-state materials, like MOFs, that 
have yet to be deployed. These data sources can help to bridge the gap between material 
performance in the laboratory and that at an industrial scale. Training AI models on these 
data can make them better at predicting performance in industrial settings, reducing time-
consuming and expensive iteration to optimise real-world performance. For example, 
models trained on these data could estimate a wider range of important material properties, 
such as heat capacity, thermal conductivity, density, surface tension and viscosity, and assess 
trade-offs between these kinds of performance parameters and business case drivers (such 
as upfront investment requirements and the levelised capture cost per tonne). 
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Other innovation barriers in CCUS 

AI can help ameliorate the energy penalty associated with CCUS at a technical level; however, 
there are other substantial hurdles to deployment that will delay the introduction of new 
CCUS materials to the market (Figure 4.11). For instance, translating new technologies from 
laboratories to industry is challenging. AI has already been deployed to identify highly 
performant MOFs, and verifying the properties of these materials at the laboratory scale 
typically requires only milligrammes to grammes of material (Wright, et al., 2024). In contrast, 
expanding production into the order of hundreds of tonnes per year itself requires 
substantial research, equipment and investment. 

Figure 4.11 ⊳ Innovation acceleration from AI in CO2 capture materials 

   
IEA. CC BY 4.0. 

AI is well positioned to tackle the computational challenges of selecting new CO2 capture 
materials – but integrating it into the broader energy system remains complex   

A share of the deployment of CCUS in the electricity and industrial sectors will be in plants 
that have already been built. Adding complex end-of-pipe equipment to these brownfield 
facilities is not straightforward. Innovation in CCUS materials can reduce the need for 
additional on-site equipment but not remove these complexities altogether. Industrial 
facilities are not always co-located with suitable storage geographies, requiring significant 
infrastructure investment – including CO2 pipelines, CO2 injection facilities and, in some cases, 
CO2 shipping. AI can reduce the time and costs of this investment by helping optimise 
brownfield site layout and heat integration, and identifying the sites most suitable for CCUS 
retrofitting.  

Beyond these hurdles, the regulatory and permitting environment is complex. CCUS projects 
exist in a complex investment environment; viability may depend strongly on uncertain 
carbon prices, and there can be significant upfront capital investment. Even superior CCUS 
technology will struggle if investors cannot translate technological value into market value. 
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Carbon capture materials are important for 
reducing CCUS costs, but the pace of recent 
innovation has been slow.

AI could substantially accelerate the 
innovation proving phase by generating and 
evaluating new materials from a large design 
space, reducing the cost of CCUS.

AI could somewhat accelerate the innovation 
scaling phase by reducing the barriers to 
brownfield participation and easing business 
cases, reducing the risk of CCUS.

Overall, the reduction in time to market is 
indicatively estimated at 30%.Proving – costs, risks and time
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4.4.4 Cement production 

Cement is a critical building block of modern, urbanised, industrialised economies. Excluding 
water, global demand for concrete is greater than all other materials combined. Because of 
its scale, the cement industry‘s energy consumption and CO2 production are substantial. It 
accounts for 6% of global energy-related CO2 emissions 3, 60% of which are process emissions 
that cannot be abated by switching to clean energy. Although demand for cement and 
concrete has peaked in advanced economies, consumption remains high, and growth will 
continue in many emerging market and developing economies. Sustainable solutions need 
to be found, but these must also be applicable at a huge scale and low cost. 

Core scientific challenges to cement decarbonisation 

Cement is difficult to decarbonise because most of its emissions come from calcium 
carbonate, one of the core raw materials from which it is made. Calcium carbonate is fired 
in kilns at high temperatures, releasing CO2 and reacting with other raw materials to form 
clinker. Clinker is the primary component of ordinary Portland cement (OPC). Clinker binds 
together the aggregate material in concrete to attain high compressive strength. Clinker is 
useful because it hardens at the right rate: slowly enough that it can be poured into the 
desired shape within hours of mixing but quickly enough that it acquires moderate 
compressive strength within a week and high compressive strength within a month. 

One option to eliminate process emissions from clinker production is to use CCUS. However, 
this may be held back by high costs, the cost-sensitivity of consumers in emerging market 
and developing economies, and the wide spatial dispersal of the approximately 2 500 cement 
kilns operating today, necessitating expensive pipeline infrastructure to bring captured CO2 

to storage sites. 

An alternative to CCUS is producing clinker from raw materials that do not contain carbon 
(non-carbonate materials). However, the search space for non-carbonate materials is 
strongly constrained by the small subset of materials available on earth that can be produced 
at the scale required to meet cement demand. It is further constrained by the need to 
minimise costs: cement is – by a significant margin – the cheapest material produced by 
heavy industry on a per-tonne basis. 

A third option, which can reduce but not eliminate process emissions, is clinker substitution 
using supplementary cementitious materials (SCMs). These are already in widespread use for 
cement production because they are far less energy intensive than conventional clinker. Coal 
fly ash and steel blast furnace slag are the dominant supplementary cementitious materials 
today, but their availability is constrained and would fall in the future in strong climate 
mitigation scenarios.  

Despite the considerable scientific challenges to developing new materials, and the need to 
reduce clinker content in cement, research and development (R&D) spending in the sector is 
low. As a percentage of their revenue, cement companies invested less than 1% in R&D in 

 
3 This includes CO2 emissions from fuel combustion, industrial processes, and fugitive (flaring). 
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the 15 years leading up to 2020, leading to total aggregate R&D far below other sectors with 
comparable CO2 profiles, such as the steel and automotive sectors. Research into new 
cement technologies itself needs to be low cost.  

AI applications in cement R&D 

Industry and academia have adopted AI to model the strength of new cement blends. 
Predictive AI models can be useful for advancing clinker substitution because they allow 
prediction of the development of compressive strength, taking into account the time since 
the concrete was poured and the contents of the concrete, including the concentration of 
supplementary cementitious materials. However, the number of data points available for 
training is very small compared with other technologies. A widely cited training dataset, the 
Concrete Compressive Strength dataset of the UCI Machine Learning Repository, contains 
just 1 030 entries, for which it reports only nine variables per entry. It was created in 1998 
and remains in common use for training models. This contrasts strongly with other sectors 
like catalysis where new experimental data have continuously become available.  

The applicability of existing data to novel applications is low: the only SCMs included in most 
datasets are fly ash and steel slag; alternative emerging approaches are not represented, and 
this limits the scope for AI. There are many promising alternatives: calcined clay-based 
cements (LC3s) can reduce clinker content to around 50%; ultra-low-clinker cements can go 
further – down to around 25% – by careful tuning of the concrete and cement blend; 
carbonating calcium silica cements (CCSCs), like the Solidia technology under development 
by Holcim, have a different chemical structure that requires less carbonate addition, but 
these are not suitable for all applications. If data availability improves, AI could accelerate 
these technologies – not just for emissions abatement but also to reduce energy 
consumption.  

Expanding the reach of cement datasets to include these clinker reduction approaches is 
necessary to better train AI models to predict the compressive strength development of 
these new cement blends. The data required include, at least, a more complete breakdown 
of the supplementary cementitious materials used; the type and quantity of chemicals added 
during concrete mixing to enhance strength (admixtures); and the complete particle size 
distribution of the aggregate, which can impact the performance of ultra-low-clinker 
cements. Models trained on these data could reduce the amount of laboratory testing 
required to identify new performant cement blends. 

Non-carbonate cements show great promise for reducing process emissions but have low 
TRLs that could benefit from acceleration by AI. Research interest in the area is active: two US 
start-ups, Sublime and Brimstone, are entering pilot-phase production using novel processes 
to produce cements from these silicates. There are also unexplored opportunities with 
magnesium-based cements, which have been deployed in niche applications, but which were 
formulated from magnesium carbonates that produce even more process emissions than 
conventional cement. Non-carbonate alternatives, such as magnesium silicates, may have 
adequate geological availability in some regions, but they have no substantially developed 
technology routes that could be adopted for large-scale production.  
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Figure 4.12 ⊳ Technology readiness levels and process emissions associated 
with novel cement technologies 

 
IEA. CC BY 4.0. 

Novel cement types can offer significantly lower process emissions  
but require ongoing innovation to reach the market 

Notes: OPC = ordinary Portland cement; LC350 = limestone calcined clay cements with a clinker content of 
50%; CCSCs = carbonating calcium silica cements; Mg = magnesium. OPC is a mature technology with a TRL 
greater than 9. Sequestration effects during the carbonation of CCSCs are not counted in the estimation of 
their process emissions.  

AI may enable these technologies to achieve a high level of industrial maturity rapidly to 
compete with the 100 years of industrial optimisation that have been applied to 
conventional cement production. Opportunities for the optimisation of non-carbonate 
production go beyond the reduction of process emissions – non-carbonate cements can also 
be more efficient than the current best-in-class technology used for OPC. If achieved globally, 
the potential for energy reduction is around 6 000 petajoules, or about 50% of today’s 
consumption within the sector. 

Both electrochemical and hydro/pyrometallurgical pathways have been proposed to process 
non-carbonate materials, 4 creating a complex solution space. The electrochemical route 
faces similar technical challenges to other electrochemical processes in which AI has already 
been widely deployed for efficiency optimisation. The methods for electrochemical catalyst 
design, outlined in Section 4.4.2, can also be applied to non-carbonating cement materials 
to design electrolytic cells that are efficient, affordable and stable. Hydro/pyrometallurgical 
pathways are affected by a range of interacting parameters – pH, temperature, residence 

 
4  Electrochemical pathways use an electrolytic cell (like those used to produce hydrogen) to enable 
decomposition of the raw materials using electricity. Hydro/pyrometallurgical pathways first decompose the 
raw materials into calcium salts using several phases of acid leaching (hydrometallurgy) then subsequently 
process them into cement by kiln firing (pyrometallurgy).  
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time and particle size distribution – which can be complex and non-linear, and which could 
be better handled by AI tools.  

Overcoming the limitations of data availability for this novel technology is challenging but 
not impossible. In the catalyst research space, machine learning models have been 
effectively trained on small datasets, emphasising the importance of the information content 
of datasets beyond merely their volume or size. Using data collected in previously unexplored 
scientific contexts, or using experimental designs close to known high-performing examples, 
may hold more value for training AI than unsystematically gathered data.5 Alternatively, 
datasets for catalyst materials that are applicable to all electrochemical processes are very 
large. Targeted experimentation and computational chemistry can be used to adapt these 
datasets so that they can be used to train AI to specifically propose materials for producing 
cements from non-carbonate materials.  

Because of the global scale of cement production, meaningful uptake of new technologies to 
produce cement from non-carbonating raw materials requires participants from many 
sectors of government and across all regions, including emerging market and developing 
economies in particular. Although AI may not have been used by first-generation innovators 
for want of data availability, second- and third-generation innovators will benefit from 
increasing data volumes and superior AI models and can, therefore, bring new opportunities 
to the market more quickly.  

Other innovation barriers in cement production 

AI, aided by adequate data, can accelerate the maturation of these technologies and 
therefore reduce energy use and process emissions; however, even these high-performance 
innovations will struggle to rapidly transform the sector simply because of the market’s scale 
(Figure 4.13). For comparison, the largest electrochemical process in heavy industry today is 
primary aluminium, which generates about 110 million tonnes of product per year. If the 
entire capacity of aluminium production by weight was replicated and applied to the 
electrochemical synthesis of cement from non-carbonate materials, it would still represent 
less than 4% of global demand. Appetite for capital investment in new plants is low. In most 
advanced economies, and in the People’s Republic of China (hereafter, China), cement 
demand is in decline, which has the potential to create production overcapacity. 
Replacement technologies may need to wait for conventional plants to be retired, but 
industrial plant lifetimes can be long (> 25 years). 

The scale of the sector informs the broader regulatory and business environment. Because 
of concrete’s ubiquity, regulators need to be convinced of the safety performance of new 
market entrants, which requires rigorous testing. The testing environment itself can be 

 
5 Data with high information content can be gathered during experimentation phases by using active learning 
approaches, such as uncertainty sampling, entropy and query-by-committee, to guide testing into areas of 
particular weakness for AI models, enabling increases in sampling efficiency by a factor of between three and 
ten. 
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challenging for new entrants: demonstration-scale plants need to be run for a long period to 
produce sufficient material for standard tests.  

New investment also needs to integrate dispersed and complex supply chains, which include 
quarries, cement plants, concrete grinding and a wide range of use cases like prefabrication, 
ready-mix and on-site mixing. Different technologies will require changes at different points 
along the supply chain, each with unique complexities. For example, non-carbonate routes 
can produce cements that are drop-in substitutes for existing cement, which may help them 
clear the hurdles of regulatory approval, reducing the need for adaptation across the 
downstream supply chain. Conversely, the upstream supply chain relies on the quarrying of 
different feedstock, and the electrochemical pathway needs significant electricity generation 
and transmission infrastructure to supply energy to cement producers. 

Figure 4.13 ⊳ Innovation acceleration from AI in cement 

 
IEA. CC BY 4.0. 

There are exciting innovations in the cement sector, which AI could help prepare for the 
market, but scaling them to make a dent in the huge cement market is challenging  

4.4.5 Summary 

Across the four focus areas, AI is already used in the search for molecules, chemistries and 
materials (i.e. at the nano/microscale). Here, the scientific complexity is high, and AI is well-
placed to generate candidates that meet specific optimisation criteria. The large number of 
open-source databases on materials properties has facilitated the rise in use of AI models. 
However, blind spots remain where AI deployment has not lived up to its potential, such as 
in sectors like cement. Even at this scale, datasets can hinder AI progress: in the catalyst 
space, for example, many reactions have been reported and stored in open repositories, but 
useful data available to train a model targeting a specific reaction may be limited. 
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Despite the opportunities for AI at the microscale, a major portion of the innovation 
challenge relates to the integration of new materials into new products (i.e. at the 
mesoscale). AI also has a role to play here – the battery sector, for instance, has deployed it 
to improve the modelling of new cell types – but the challenge of data availability for training 
AI models is more acute at the mesoscale, where data on molecular properties are less 
relevant. Opportunities are emerging to train on more useful datasets – like the data on real 
CCUS facilities published by some government bodies. However, these data are based on 
prototypes and pilots, can be expensive to generate, and are more commercially sensitive. 
Public policy has a role to play in encouraging the generation of useful databases at this scale 
and facilitating more widespread access. 

For some technologies, AI also has a role to play at the macroscale as new products are 
integrated into new processes within the energy system. For mass-manufactured products 
like batteries, AI is already used to accelerate production-scale timelines and de-risk 
investment. Training data can be created from existing digitalised facilities, noting that they 
are not generally open source. However, in some contexts, even with adequate training data, 
the impact of AI is likely to be much more limited; in cement, for instance, the scale of the 
existing industry will be tricky to displace. 

As innovations come to market, the scale of the design challenge increases. At first, 
innovations focus on individual molecules. This grows into incorporating these molecules 
into small prototypes or demonstrations before they are deployed at scale. To be useful, AI 
tools need data across these different scales that relate to both the thimblefuls of materials 
used to test new catalyst designs and the operation of mega-factories where new batteries 
are produced. As an innovation evolves, the training data need to evolve with it (Table 4.2).  

Table 4.2 ⊳ Properties of datasets at different innovation scales 

Data scale Nano/Micro Meso Macro 

Example Molecular properties of 
battery electrodes 

Performance of battery 
cells (e.g. efficiency, 

degradation) 

Operational data for 
battery manufacturing 

facilities 

Innovation phase Applied research Prototyping, 
demonstration plants Early adoption 

Typical number 
of entries > 1 million Approximately 

100-1 000 > 1 million 

Modes of 
origination 

Simulation, generative AI, 
experiment 

Pilot plants,  
experiment 

Proprietary from 
operating plants 

Key use cases of 
AI for innovation 

Rapid material screening, 
comprehensive data 

repository 

Prototype  
development 

Faster troubleshooting 
for new designs 

Key limitation Some key scaling effects 
are not included Expensive to gather Rarely open source 
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A radical long-term vision: From innovator’s tool to innovation engine 

Today’s applications of AI to energy technology innovation demonstrate its tremendous 
potential as a tool for innovators. However, as AI techniques improve and are integrated 
more deeply into industrial machines and consumer goods, AI could become a more 
fundamental source of innovation. History counsels against attempts to predict precisely 
where the technology frontier will lie decades from now, but, equally, it suggests that we 
will underestimate the pace of change if we think only of how AI can undertake the tasks 
performed by individual research teams today. 

Without major advances in prediction and testing, the ability of AI to make materials 
discovery millions of times faster may only marginally improve the rate of change of 
product efficiency. Once tested, the speed of uptake of a higher-performing device or 
more efficient manufacturing process will still face familiar challenges of immature 
supply chains, customers who steeply discount their future savings, unfamiliarity among 
installers and risk-averse buyers. Recent history is littered with unsold new products 
intended to optimise energy use for rational economic actors. There is no reason to 
believe that the behavioural barriers and co-ordination market failures that limited their 
adoption will fall away quickly. 

A key question is whether AI can help develop new technologies that unblock some of 
the major bottlenecks to more efficient energy use. Each year, roughly 4 exajoules (EJ) of 
energy, similar to the final energy demand of Thailand, is used to produce ammonia for 
fertiliser that ultimately leaches into the environment rather than being taken up by 
crops. Around 30 EJ more energy than necessary is used to heat buildings that are poorly 
insulated or rely on inefficient technologies. About 7 EJ of electricity is generated but 
never reaches consumers due to grid losses, equivalent to the final energy demand of 
Indonesia. Around 45 EJ of extra energy (nearly double the final energy demand of Africa) 
is used to move vehicles rather than the people inside them. Across these four cases, 
technologies already exist to save a substantial amount of the wasted energy, but they 
are not used. 

Today, researchers are asking AI to solve known challenges relating to the capital or 
operational costs for components of existing types of devices. However, key aspects of 
energy technology innovation often relate to how new inventions integrate into wider 
technical and social systems. To deliver a step change in its ability to outperform or 
supercharge human-led innovation, AI would need to solve challenges in a much broader 
and more imprecise set of parameters, including lifetime costs, financing, culture and 
traditions. 

Long-term projects for data scientists and energy researchers could consider what it 
would take for future AI tools to help propose, test and roll out technologies that trigger 
the following outcomes. Our inability to imagine the ways in which these challenges could 
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be unlocked by technology is inherent to their salience, but our realisation that AI could 
generate solutions that humans cannot invent alone makes them exciting. 

 High-precision application of tailored fertilisers in optimal quantities on the world’s 
approximately 500 million small-scale and subsistence farms. 

 Integrated design and construction of millions of highly desirable and affordable 
buildings each year that guarantee zero external energy needs on a net annual basis. 

 Automated public transport vehicles and associated logistics that practically 
eliminate urban congestion and facilitate universal access to rural services. 

 Rapidly modifiable and competitive industrial processes that can adjust to different 
inputs and outputs according to economic conditions with very low levels of material 
and energy waste. 

 A means of deactivating radioactive waste and making it safe for low-cost disposal 
without the need for centuries of monitoring and verification. 

Box 4.1 ⊳ How can AI accelerate the innovation of nuclear energy 
technologies? 

As the world enters a new Age of Electricity, interest in nuclear power has grown to a 
50-year high (IEA, 2025). The technology sector is making important investments and 
commitments to nuclear power (see Chapter 2). New technologies such as small modular 
reactors (SMRs) remain to be demonstrated at scale but hold promise for the fast-
growing industry because they have lower upfront investment than conventional plants, 
which could be more attractive to private investors (most SMRs under development are 
expected to cost less than 2 billion USD, compared to greater than 10 billion USD for 
conventional nuclear in some markets). However, high levelised costs and regulatory 
hurdles remain significant barriers to deployment. 

Nuclear fission reactors are complex systems with multidisciplinary challenges. AI can 
bring about improvement both by better integrating components within those systems 
and by improving the components themselves. Generative AI has accelerated material 
design by better handling the large design space of advanced alloys, more accurately 
predicting material properties, and improving defect detection via image processing 
(Sainju, et al., 2022). Machine learning models have optimised reactor geometry to 
improve temperature control (Sobes, et al., 2021). Predictive AI has modelled strategies 
for fuel loading and management to simplify operational processes (Huang, et al., 2023). 
The monitoring of fission reactors can produce even more data than conventional 
industries; AI can process these vast datasets better than humans and use them to 
execute online condition modelling to inform predictive maintenance. Large language 
models have been used to translate identified faults into transparent explanations for 
operators at demonstration plants. 
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While fission is entering a phase of renewed growth, nuclear fusion remains in the 
experimental stage. AI therefore plays a different role: rather than primarily improving 
efficiency and automation, it is being used to address fundamental scientific challenges. 
In fusion reactions, maintaining stable plasma at extreme temperatures is a key challenge 
where even small instabilities can be disruptive. Research at both the Swiss Plasma 
Centre and the Joint European Torus in the United Kingdom has shown that 
reinforcement learning algorithms can dynamically adjust magnetic fields to stabilise 
plasma. AI-driven simulations and high-performance computing are also accelerating the 
development of smaller, modular reactor designs for fusion. Commonwealth Fusion 
Systems, for example, is using AI to refine reactor components before physical 
prototyping and to optimise machine component geometry to improve efficiency and 
manufacturability. 

As in many sectors, data availability plagues AI deployment for nuclear power. In fusion, 
data is limited because large-scale facilities conduct relatively few trials, and each 
operates under unique conditions. In fission, while extensive operational data exist, 
access is limited by security and commercial concerns. Therefore, the clearest AI 
opportunities are those that emerge from more general research, such as material 
design, or that can be developed in-house by existing players, such as machine learning 
for system control. 

Despite data challenges, AI has already been widely adopted by the nuclear industry. 
However, the recent wave of AI growth is not likely to further accelerate nuclear fusion 
deployment, or to bring SMR deployment to before 2030, because – as in many sectors 
explored in this chapter – there are major non-technical bottlenecks. These are, in 
particular, regulatory approval bottlenecks, long build times and challenges related to 
building out new industrial supply chains. Reactor licensing and testing cycles, for 
instance, are much slower than for other sources like renewables. Establishing supply 
chains for the higher-purity fuel needed for SMRs also presents an emerging challenge. 

Therefore, while AI holds promise for scientific development in a complex field, its impact 
is constrained by the broader regulatory, economic and geopolitical factors that define 
the nuclear industry. Over time, AI may also help overcome these barriers, but at present, 
it appears unlikely to offer a silver bullet either for new fission reactor designs or fusion 
reactors. 

4.5 Policies to accelerate AI innovation 

4.5.1 Innovation funding  

As highlighted in this chapter, AI has the potential to significantly reduce the time associated 
with energy innovation and, as a result, the cost. This is starting to be reflected in 
government funding. The United States alone increased federal research, development and 



 

Chapter 4 | AI for energy innovation 199 

 

4 

demonstration (RD&D) support to USD 170 billion in 2023, a 27% increase compared with 
2019, while in China, RD&D support rose to USD 80 billion in the same period (although 
tracking innovation support in China is challenging given its mixed economy).  

Budgets for RD&D programmes relating to information and digital technologies have risen in 
the last five years. The US Networking and Information Technology Research and 
Development (NITRD) close to double its budget between 2019 and 2023, reaching close to 
USD 11 billion. The European Union, beyond Horizon Europe, created the Digital Europe 
programme in 2021 focused on bringing digital technology to businesses, citizens and public 
administrations with around USD 1.2 and 1.1 billion allocated in the EU budget for 2024 and 
2025 respectively.  

Figure 4.14 ⊳ Share of AI in selected government information and digital RD&D 
programmes 

 
IEA. CC BY 4.0. 

The share of AI-related projects in information and digital RD&D programmes has 
increased, by close to 45% in some cases 

Note: NITRD = US Networking and Information Technology Research and Development; NSFC = National 
Natural Science Foundation of China. 

Alongside the increase in digital-focused RD&D budgets, allocations to AI-focused RD&D also 
grew. In the United States, AI-related projects accounted for about 17% of RD&D budgets in 
2019 and grew by up to 30% in the 2023 budget, driven by the support of the Executive Order 
on Artificial Intelligence for the American People in 2019. In the European Union, Horizon 
2020 and the subsequent Horizon Europe programmes gave awards to more AI-related 
projects, growing from nearly a third to 45% of overall EU spending on digital projects. The 
Natural Science Foundation of China (NSFC) has seen relatively slower growth in the AI share.  

Specific programmes targeted at AI applications in the energy sector are yet to emerge. 
Canada’s Digital Accelerator funds foster the development of energy infrastructure 
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embedded with AI and digital applications, while the US NITRD instead funds specific 
agencies, including the Department of Energy receiving between USD 110 million and 
USD 180 million annually since 2019.  

Figure 4.15 ⊳ Share of AI and energy projects in US NITRD programmes 

 
IEA. CC BY 4.0. 

Although the share of AI-related projects has risen in the past five years,  
the share awarded to the Department of Energy has remained constant over time 

Note: 2024e = estimated values for 2024. 

4.5.2 Data, models and computing infrastructure 

High-quality, publicly funded datasets form the foundation of virtually all significant AI 
breakthroughs across fields such as biology, materials science and weather modelling. These 
datasets enable AI models to learn from vast scientific knowledge and make predictions that 
drive advancements in drug discovery, materials design and climate forecasting. 

Scientific datasets are generated through various methods: some, like the Protein Data Bank 
(PDB), rely on global contributions from researchers, while others, like the ERA5 hourly 
climate and weather dataset, are developed by specific organisations and made publicly 
available for follow-on research. By reducing the need for individual research groups to 
generate their own costly datasets, these open resources facilitate global collaboration and 
accelerate scientific discovery. 

However, maintaining and expanding these large-scale open databases comes with 
significant costs, which can vary depending on the method of data acquisition. 
Experimentally derived datasets, such as the PDB, require extensive laboratory work and 
specialised equipment. The cost of experimentally determining each protein structure in the 
PDB is estimated at approximately USD 100 000, implying a total replacement cost of around 
USD 20 billion for the entire database. 
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Figure 4.16 ⊳ Indicative number of open-access databases available for AI 
training by the scale of the innovation problem 

 
IEA. CC BY 4.0. 

Although they can be expensive to produce, there are numerous large, high-quality 
databases of molecular properties – but later innovation stages are less well represented 

Note: The bubble area represents the typical number of entries per dataset. 

In chemistry and materials science, the cost of producing each entry in a materials database 
can be significantly lower, at about USD 10 to USD 1 000 per data point, depending on the 
complexity of experiments. For this reason, there are a number of computationally derived 
datasets at the molecular or microscale that have lower costs per entry (Figure 4.16), such 
as the Open Quantum Materials Database. The overall cost, however, can still be high, 
requiring substantial infrastructure investment, including high-performance computing 
resources, expert labour and ongoing maintenance. Using physical experimentation rather 
than computation to generate datasets is more expensive per entry; the cost of acquiring 
data for the National Renewable Energy Laboratory’s High Throughput Experimental 
Materials Database is estimated at about USD 200 per data point for its 140 000 entries. 

These costs can greatly outweigh the costs of training scientific models. This cost structure 
can drive a strategic shift in resource allocation for innovation. Rather than mirroring the 
computing-intensive approach of consumer AI, scientific innovation would benefit more 
from concentrated investment in high-quality data collection, curation and validation.  

The challenge extends beyond cost. While publicly funded research produces vast amounts 
of scientific data, often on small operating systems at the useful mesoscale for innovation, 
much of it remains unstructured, unstandardised or difficult to access. At this scale, datasets 
do not need to be very large to be valuable – less than a thousand entries can be effective in 
training or fine-tuning predictive AI to understand how new materials incorporated into 
actual devices could behave. Simultaneously, valuable commercial and industrial datasets at 
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the macroscale remain siloed behind proprietary barriers. Without the scientific 
collaboration that comes from open access to this macroscale data, new innovations that 
exploit AI using open-access datasets at the molecular scale can flounder. Creating 
interoperability between public, private and academic data resources through standardised 
formats and collaborative frameworks would dramatically enhance both the scope and 
accuracy of scientific AI models. However, ensuring that these datasets remain open, well-
maintained and accessible requires substantial and sustained public investment. 

The expansion and upkeep of public scientific databases will continue to demand significant 
computational infrastructure, including traditional supercomputers, cloud-based platforms 
and AI-specific accelerators. Leading scientific supercomputers can cost upwards of 
USD 500 million, a fraction of the cost of the largest commercial generative AI training 
clusters.  

Figure 4.17 ⊳ Cost breakdown of scientific versus consumer AI models  

 
IEA. CC BY 4.0. 

While scientific AI models have lower training and inference costs than consumer 
generative AI, they rely on scientific data that are costly to reproduce and validate  

While public funding for AI has largely focused on the development of AI models and direct 
support for data centre development, ensuring the long-term success of AI-driven scientific 
innovation requires a more strategic approach that goes beyond hardware investment.  

This suggests that research ecosystems must incentivise continuous additions of empirical 
data to open repositories. This means creating frameworks where experimental results from 
both academic and industrial sources – successful and unsuccessful – are fed back into 
publicly accessible datasets, enriching the knowledge base for future AI applications. 
Ensuring that results and datasets augment one another in virtuous cycles is key to 
supporting AI-driven innovation in scientific fields. 
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4.5.3 Conclusions and future directions 

The analysis in this chapter makes the case for using policy to accelerate AI-driven energy 
innovation for the achievement of energy and climate goals, economic growth, improved 
security and greater affordability. The following conclusions are aimed at guiding policy 
makers towards this goal:  

 While they are only partial indicators of innovation activity, data on patents and start-
ups suggest that AI-first approaches to innovation are currently under-represented in 
the energy sector. Similarly, although government research, development and 
innovation spending dedicated to AI has seen an increase, available data suggest that 
energy-related AI applications remain under-represented.  

 The potential for AI to accelerate energy innovation is great but poorly mapped. A few 
applications, notably battery chemistries, have garnered most of the public attention. 
However, potentially transformative energy technologies where AI could play a role in 
accelerating innovation are numerous (see Table 4.1 for an indication). A first step 
would be the more comprehensive mapping of promising technology areas and the 
development of a corresponding inventory of current AI-based tools (datasets, models, 
etc.). The analysis in this chapter represents a step in this direction, but there is far more 
to do. 

 AI approaches currently excel at accelerating the discovery of things like molecules, 
enzymes and catalysts, that is, domains where AI models can be built to understand and 
simulate highly complex but deterministic physical or chemical interactions. Data 
availability for model development is higher in these fields, but there are still numerous 
gaps. Public investment in data generation, research consortia and open-source data 
curation will be needed. 

 Even after promising new technology components are identified, much of the effort and 
risk of energy innovation lies in their integration into new products and the integration 
of new products into industries. Here AI can play a strong role but one that needs public 
policy support as well. Investment in energy-specific high-throughput experimentation 
equipment and self-driving laboratory technologies is likely to be highly beneficial. 
Public policies to support the generation and publication of datasets at the level of 
product integration (e.g. battery prototypes) would support researchers in testing and 
scaling promising new products more quickly. 

 Finally, regulators and downstream users will need to reflect on what needs to be 
adapted in their processes. As AI provides increasingly powerful prediction tools, 
adapting testing and certification protocols may be important. 
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Chapter 5 

Emerging themes on energy and AI 
Implications for economies, businesses and people 

 

• Artificial intelligence (AI) applications address various dimensions of energy security, 
including adequacy of energy, affordability, system resilience and the system’s ability 
to emerge from shocks or disruptions. For example, AI-driven simulations have helped 
reduce operational costs in various processes. Predictive maintenance is being 
deployed to reduce infrastructure downtime and improve operational efficiency. 
Predictive analytics has been helping improve grid stability.  

• Simultaneously, the security of energy supply chains is itself critical for the roll-out of 
AI. The electricity system is subject to several critical bottlenecks. These include 
stretched supply chains for critical components, long lead times for generation and 
transmission projects, and complex and time-consuming permitting processes. A key 
consideration is the demand for critical minerals, the supply of which is highly 
concentrated. For example, in 2030, data centre demand for gallium could equal up 
to 11% of today’s supply, and China accounts for 98% of gallium refining.  

• Data centres are new actors in electricity systems – at least at the scale of the 
projections being driven by AI deployment. In the United States, the installed capacity 
of data centres is projected to consume a similar share of peak power demand as the 
entire industrial sector by 2035 in the Base Case (as introduced in Chapter 2). The 
energy industry and technology sector need to deepen dialogue to develop a shared 
“playbook” for how to efficiently integrate data centres into electricity grids. 

• Cumulative data centre investment totals USD 4.2 trillion to 2030 in the Base Case. To 
cater for data centre growth, power sector investment will need to cumulatively reach 
USD 480 billion over the next five years globally, with nearly half of that taking place 
in the United States. Data centre-related power sector investment in the 
United States is over 15% of its total power sector capital expenditure in this period.  

• Emerging market and developing economies face several barriers to the scaling up of 
data centre capacity on the one hand and AI-led solutions in the energy sector on the 
other. By improving the quality of power supply, fostering local data collection, 
developing talent and creating robust policy frameworks, such economies can harness 
AI to drive more inclusive, future-proof growth. 

• Data centres are on track to account for 3% of the power sector and 1% of total energy 
sector emissions by 2030. They are among the few sectors that show emissions 
growth to 2030. Widespread adoption of today’s AI applications could lead to 
emissions savings in other sectors that exceed data centre emissions in 2035. 
However, such AI adoption is not guaranteed and could be negated by rebound 
effects and increased consumption of fossil fuels induced by AI-enabled lower prices.  

S U M M A R Y  
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5.1 Introduction  

Global discussion on the rise of artificial intelligence (AI) has been dominated by themes of 
energy demand from data centres, specifically AI-related compute, the sustainability of 
meeting this demand, and AI-led advancements in science and innovation. These themes 
were covered in depth in the preceding chapters. This final chapter brings together these 
emerging themes of energy for AI, and AI for energy. They include the policy and regulatory 
landscape that affects AI and energy; the impact of AI on energy security and the energy 
security concerns that may affect the future of AI; the net impact of AI on emissions; the role 
of AI-related skills in the energy sector; the specific issues of emerging market and developing 
economies; and the investment implications of the rise of AI.  

AI is being deployed in a broader social, political, geopolitical and economic context. The 
impacts of the energy needed for AI, and of AI on the energy sector, will go beyond first-
order issues of demand and supply. Factors external to the energy sector – including 
industrial supply chains, investment frameworks and capital availability, and digitalisation 
trends in different economies – will also influence the outlook. Indeed, some of these 
connections are surprising and highlight the links between different policy areas. For 
example, it is generally not well understood that data centres depend on complex, stretched 
and often concentrated supply chains for critical minerals or power transformers. 

This report has been made as comprehensive as possible, covering the demand outlook, 
supply scenarios and AI applications across energy optimisation and innovation. However, a 
consistently reoccurring theme across it is the need for further work to understand the 
uncovered issues in more detail. To return to the example noted above: despite the 
importance of critical mineral use in data centres and the associated infrastructure, there are 
very limited and often highly contradictory publicly available data on the mineral intensity of 
data centres as a whole and of individual data centre components. This is a major gap.  

Even on the demand side, which has been well studied, there is a difference of more than a 
factor of seven between the highest and lowest published projections for global data centre 
electricity demand. The broader literature on demand projections is – to put it mildly – highly 
divergent, difficult to interpret and confusing for policy makers and investors. Although some 
uncertainty is inevitable, particularly in a new, fast-moving technology field, more must be 
done to narrow it and equip all actors with the tools needed to make informed decisions.  

Another emerging theme of the report is the importance of enhancing the dialogue between 
the technology sector and the energy industry. Both are complex, multifaceted sectors, 
subject to their own constraints, incentive structures, and infrastructural and policy systems. 
However, the rise of data centres as a major actor within the energy sector is a new trend – 
at least at the scale being seen today. Addressing the challenges and opportunities that AI 
brings will require both sides of this equation to deepen their engagement even further. 
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5.2 Energy security in the age of AI  

The nexus between energy and AI has implications for energy security. There are at least 
two broad dimensions to this relationship. The first arises from the impact of AI on energy 
security. AI can be – and indeed already is being – applied to address specific challenges 
relating to energy security concerns. At the same time, greater digitalisation and connectivity 
in the energy sector – which enable the use of AI – can create new energy security challenges. 
The second dimension arises from the need to mitigate energy sector-related supply chain 
risks, which have implications for the scaling up of data centres to meet the growing demand 
for AI.  

5.2.1 Applications of AI that enhance energy security  

Energy security is characterised by several elements that include, but are not limited to, first, 
reliable access to energy to meet an economy’s needs; second, the affordability of this 
energy with limited volatility in prices; and third, resilience against energy market shocks – 
or the ability of the energy system to quickly recover from them. AI applications that address 
one or more of these dimensions include:  

 Reducing energy costs: AI applications are being used in a range of applications, 
including in resource evaluation and the optimisation of processes, leading to the 
acceleration of development times and reduction of costs. For example, the application 
of AI-driven simulations has been estimated to reduce costs by nearly 10% in offshore 
oil operations. Similar outcomes are observed with renewables, for example where AI 
models have been deployed to optimise wind farm operations, leading to a reduction in 
operational costs. 

 Securing critical energy infrastructure: AI has applications in ensuring the security of 
critical energy infrastructure in places that are typically hard for humans to access. For 
example, following the sabotage of the Nord Stream pipeline in 2022, NATO’s Critical 
Undersea Infrastructure Coordination Cell has been exploring the use of unmanned 
maritime systems enabled by AI that could help identify suspicious underwater activity 
and prevent disruptions to energy supply (WSJ, 2025). 

 Energy system resilience through better weather forecasting: Accurate weather 
forecasts and analysis of changing weather patterns in a warming world are essential to 
optimise the operation, planning and resilience of energy systems. Weather forecasting 
computation times can be cut from several hours to just a minute by AI applications, 
using one-thousandth of the electricity (discussed further in section 3.6). 

 Predictive maintenance to enhance reliability: AI-based predictive maintenance is 
revolutionising energy infrastructure management by ensuring reduced downtime and 
improved operational efficiency.  

 Predictive analytics for grid stability and enhanced integration of renewables: As the 
share of variable renewable electricity generation rises, AI algorithms can improve the 
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dispatch of energy resources, crucial for handling electricity systems with a high share 
of renewables. The enhanced integration of domestically generated renewable energy 
also reduces dependence on imported fuels.  

 Cybersecurity enhancements to protect critical infrastructure: As energy systems are 
becoming increasingly electrified, integrated and connected, their vulnerability to 
cyberattacks has also increased. AI-enabled cybersecurity features, such as enhanced 
threat detection and more responsive protection, can help secure energy systems. On 
the flip side, AI can also be used to make systems more vulnerable, as discussed in 
Box 5.1.  

These are just a selection of the categories of AI-led interventions that work to enhance 
energy security, unlocking greater affordability, resilience and reliability and ensuring 
adequate supplies to meet domestic demand. There are yet others that work towards the 
same outcomes, such as reduced import dependence through greater energy efficiency and 
enhanced domestic generation of electricity.  

Box 5.1 ⊳ AI and cybersecurity in the energy sector: A two-way street 

As the energy sector has become more electrified, digitalised and connected, it has also 
grown increasingly vulnerable to cybersecurity threats. This vulnerability is compounded 
by the presence of legacy information technology (IT) infrastructure, automation, cloud 
computing and reliance on third-party vendors that might not have secure systems (IEA, 
2021a). Intrusions by malicious actors have exposed critical infrastructure to disruptions, 
with implications for the economy, safety and geopolitical tensions. There have been 
multiple instances of attacks on energy systems since the first known instance where a 
cyberattack led to a blackout in Ukraine in 2015 affecting 225 000 people (IEA, 2020). 
These include a malware attack on Mumbai’s electrical grid that led to blackouts in India’s 
financial capital in 2020 (India Today, 2021), and the cyber ransom attack in 2021 that 
led to the disruption of operations at the world’s largest oil pipeline system, which 
supplies 40-45% of fuel in the eastern United States (IEA, 2021b). Analysis shows that a 
typical gas and electricity utility faced over 1 500 attacks per week in 2024 (Checkpoint, 
2025), triple the number four years earlier (IEA, 2023a).  

These episodes underscore the need for energy systems to become more resilient to 
cyberattacks. AI acts as a force multiplier in both directions, enhancing threat detection 
and enabling more responsive protection on the one hand while simultaneously 
empowering adversaries with tools for sophisticated attacks on the other. AI applications 
can enable real-time threat detection, automated responses to incidents and enhanced 
phishing defences. On the flip side, AI-based tools can also be exploited to automate 
attacks and evade detection. Generative AI tools have been documented as being used 
by malicious actors for reconnaissance to target organisations, obtain deeper access to 
target networks, and for malicious scripting and evasion techniques (Google, 2025). In 
view of these evolving threats, the deployment of more proactive AI-enabled 
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cybersecurity systems that are quick to respond to threats is critical for ensuring the 
resilience of the energy sector. Upskilling, threat mapping and expertise sharing will be 
essential for keeping the energy sector ahead of the curve. 

Figure 5.1 ⊳ Cyberattacks per week per energy organisation, 2020-2024 

 
IEA. CC BY 4.0. 

In 2024, a typical energy organisation, such as a gas or electricity utility,  
received over 1 500 cyberattacks, triple the number only four years earlier 

Source: Checkpoint (2025). 

5.2.2 The security of energy sector supply chains for AI 

Securing the supply of affordable and reliable power for data centres is at the heart of the 
challenge of energy for AI. This section will explore the security of supply chains for AI, 
including electricity generation, transmission, power equipment and critical mineral supply.  

Electricity supply for AI  

While renewables currently supply over a quarter of data centre electricity, natural gas and 
coal still play significant roles, especially in the United States and China. To meet growing 
demand in the future, some technology companies have been supporting new supply 
options, including nuclear, advanced geothermal and long-duration storage. Section 2.5 in 
Chapter 2 contains an in-depth discussion on meeting the energy demand from data centres.  

Meanwhile, some energy companies have been proactively planning dedicated power 
generation facilities or energy supply to meet data centre demand. For example, US oil and 
gas supermajor Chevron has partnered with Engine No. 1 to develop 4 gigawatt (GW) gas-
powered “power foundries” with turbines from GE Vernova in the United States, bypassing 
transmission grids. The initiative also leaves open the option of incorporating carbon capture 
and storage, and renewable energy. Similarly, Exxon Mobil is considering a similar model, 
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with a 1.5 GW gas-fired power plant to supply hyperscaler data centres, and plans to add 
carbon capture and storage that could potentially capture over 90% of the emissions. Box 5.2 
explores the wider implications for international gas markets of US gas meeting the demand 
from data centres.  

Box 5.2 ⊳ Natural gas for data centres in the United States  

Natural gas demand to power data centres is expected to grow by nearly 35 billion cubic 
metres (bcm) globally between 2024 and 2035 in the Base Case and as high as 55 bcm in 
the Lift-Off Case. Most of the additional demand in both cases arises in the United States, 
which continues to enjoy abundant resources from its shale gas and tight oil plays. The 
prolific Permian, Haynesville and Marcellus Basins have underpinned recent growth in US 
natural gas production, which reached nearly 1 200 bcm in 2024. Around 80% of this 
supply was consumed domestically, with 10% exported as liquefied natural gas and the 
remainder as pipeline exports.  

We assessed the economics of gas in the United States to consider the impact of 
additional demand from data centres on break-even prices. We considered dry shale 
plays as a proxy for the wider market, even though some of the incremental gas could in 
practice come from resources that are cheaper (i.e. associated gas) or more expensive 
(such as conventional or tight gas), depending on where the demand centres are located. 
Because the US shale gas supply curve is long and shallow – that is, the resource base is 
abundant and most of it relatively cheap to develop – the increase in the break-even price 
that is needed to meet the additional demand from data centre usage in the Lift-Off Case 
is very small; we estimate that it is less than 1.5% of the Henry Hub price in 2035, which 
we project to be USD 4 per million British thermal units. The US gas resource base thus 
appears well placed to absorb the demand increases from data centres.  

However, it is important that gas suppliers have clear visibility of the scale of data centre 
demand growth. For example, in the Lift-Off Case, if gas-fired power generation met the 
entire increase from data centre demand in the United States over the next decade, it 
would require over 100 bcm by 2035, an amount larger than the planned increase in 
liquefied natural gas export capacity during this period. Price impacts could therefore be 
far larger if this additional demand were not planned for in the form of sufficient 
upstream investment, pipeline takeaway capacity or supply agreements with utilities and 
data centre operators. 

Grid infrastructure for AI 

In addition to energy supply for data centres, the availability of power transmission 
infrastructure is also a key determinant of energy security for AI. As discussed in Chapter 2, 
data centres have seen long queues for connections to the grid, with delays as long as 
10 years in some key markets. Around one-fifth of global data centre buildout in the 
Base Case is at risk of delay due to grid bottlenecks. Section 5.2.3 explores how the smart 
deployment of data centres can help mitigate transmission-related risks.  
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Power equipment supply chains for AI  

The growing expansion of AI data centres has amplified the urgency of addressing power 
equipment supply chain constraints. Infrastructure expansion across multiple regions has 
placed considerable pressure on the supply chain for key grid components. The heightened 
demand extends beyond equipment for high-voltage transmission to include low-voltage 
solutions, the integration of variable energy resources and new consumer demand, making 
supply chain resilience more critical than ever. 

A survey by the IEA shows that high demand for cables and power lines has significantly 
driven up prices. Cable prices have nearly doubled over the past five years; they stabilised in 
2022 before rising again due to increased demand for high-voltage cables in major 
infrastructure projects. Power transformer prices have also surged since 2022, with costs 
varying widely according to complexity and design, in some cases reaching 2.6 times pre-
pandemic levels in real terms. Challenging installation conditions further escalate costs. 
These price increases are adding pressure to already strained supply chains and investment 
plans for transmission infrastructure. Transformer lead times have nearly doubled in the past 
two to three years, with major manufacturers facing record order backlogs. 

Figure 5.2 ⊳ Increase in power transformer order backlog in selected 
manufacturing companies, 2020-2024 

 
IEA. CC BY 4.0. 

The backlog of power transformer orders has been increasing in recent years 

Note: Based on order backlogs of Hitachi Energy, Schneider Electric, Siemens Energy, GE Vernova. 

The global market has responded positively to the demand surge in power equipment, 
announcing capacity expansion plans and new investment. However, scaling up 
manufacturing capacity for key components takes time, typically requiring three to 
four years for a cable manufacturing facility, for example. While investment in capacity 
expansion is underway, long lead times for new capacity, material price volatility and 
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international trade dependencies pose challenges. Ensuring long-term visibility of future 
demand, strategic sourcing and supply chain resilience will be key to meeting the escalating 
demands of the AI energy landscape. 

Power transformer manufacturers have increased capacity, with international trade gaining 
relevance. Between 2018 and 2023, global trade in power transformers increased by 80%, 
with China, Italy, Korea and Türkiye collectively accounting for half of the total trade and 
China alone contributing a quarter. On the import side, both the United States and Europe 
have more than doubled their trade value for power transformers since 2018, with the 
United States primarily sourcing from Mexico, Europe and Korea.  

Figure 5.3 ⊳ Value of transformer imports from top three exporters by 
importing country or region, 2024 

  
IEA. CC BY 4.0. 

For many importers, the top three exporters of transformers 
 account for over half of imports  

The demand for grid infrastructure has driven up component costs, alongside other factors 
such as inflation, disruption to global logistics, material price volatility and rising energy costs 
in some markets.  

The need for essential materials includes copper, steel, grain-oriented electrical steel and 
aluminium. Grain-oriented electrical steel alone represents around 20% of the cost of a 
power transformer, while insulation, copper and aluminium together constitute around half 
of the total expense. Material prices surged in 2022, particularly for aluminium, before 
stabilising in 2023 as supply outpaced demand. Grain-oriented electrical steel prices doubled 
between 2021 and 2023, adding further cost pressures onto manufacturers; it is 60% more 
expensive today than it was four years ago. Copper prices were relatively stable throughout 
the period. 
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This increasing strain on power equipment supply chains has significant implications for the 
development of the infrastructure needed to support AI-driven energy demand. Ensuring 
supply chain resilience through long-term planning and strategic policy support will be 
essential for meeting the demands of AI infrastructure.  

Critical mineral supply chains for AI  

Besides the additional electricity demand, a major consideration related to the rapid growth 
of AI and data centres is the demand for critical minerals. Apart from bulk materials like steel 
and concrete, the construction of data centres requires sizeable amounts of several minerals 
and metals, such as copper, aluminium, silicon, gallium, rare earth elements and battery 
minerals. There is a significant overlap between the minerals needed for building new data 
centres and those that are critical to energy technologies (IEA, 2024a). 

Copper is one of the most essential building blocks for data centres due to its excellent 
conductivity and durability. It is used in power distribution systems (cables, busbars and 
switchgear), in high-performance networking and data cables, and in cooling infrastructure 
for heat exchangers and pipes. Silicon, especially ultrapure silicon, is the main 
semiconducting material used in processors and high-speed memory and storage 
components. Gallium, usually in the form of gallium nitride or gallium arsenide, is 
increasingly being used for high-frequency and high-efficiency power converters and radio 
frequency components. Aluminium plays a key role in structural components, such as server 
racks, casings and mounting structures, as well as in heat sinks and cooling plates in cooling 
systems thanks to its light weight and superior thermal conductivity. Rare earth elements, 
particularly neodymium, praseodymium, dysprosium and terbium, find applications in high-
performance magnets for motors in cooling fans, precision actuators, hard drive assemblies 
and, in much smaller quantities, optical components. Battery minerals are used for lithium-
ion batteries that are contained in uninterruptible power supplies and backup energy storage 
components. 

As in the case of energy or water use, the lack of granular data pertaining to the design, type 
and volume of specific components (chips, processors, cooling equipment, storage systems 
etc.) used in different types of data centres is an obstacle to assessing precisely the impact 
of the rapid growth of AI on the implied critical mineral demand. Our estimates indicate that 
the demand for minerals from projected data centre capacity expansions in 2030 as a share 
of their total demand in 2024 could reach up to 2% for copper and silicon respectively, over 
3% for rare earth elements and 11% for gallium (Figure 5.4). Although data centres do not 
represent a major share of the total demand for these minerals, the absolute volumes in 
2030 still reach 512 kilotonnes (kt) of copper and 75 kt of silicon, so project developers have 
good reason to pay attention to supply security.  

Mineral supplies in the coming decade need to account for the additional demand from data 
centres. Several sectors, such as defence, clean energy technology manufacturing, 
construction, aviation and data centres, will be competing for the supply of these critical 
minerals in the future. Some minerals, such as copper, face a looming gap between projected 
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demand and expected supply from announced projects – a challenge that could be further 
exacerbated by additional demand from data centres (IEA, 2024a).   

Figure 5.4 ⊳ Demand for critical minerals required to meet the growth in data 
centre capacity in 2030 as a share of their total demand in 2024  

 
IEA. CC BY 4.0. 

Data centre growth to 2030 will have varied impacts on mineral demand; the share of total 
demand is small for traditional metals, but security of the mineral supply will still be critical 

Note: The bands for each mineral represent the estimated range of their demand from AI data centres in 2030 
as a share of their total demand in 2024. 

The geographical concentration of the supply of most critical minerals is another key 
concern. In 2024 nearly 60% of the refined supply of copper, around 90% of aluminium and 
over 90% of silicon, magnet rare earths and gallium originated from the top three producing 
countries (Figure 5.5). This high market concentration highlights significant vulnerabilities to 
supply shocks if, for any reason, supply from large producers were to be disrupted, whether 
from extreme weather events, industrial accidents, trade disruptions or geopolitics. 

In recent months, trade restrictions affecting critical minerals have proliferated, notably in 
the form of export controls. In December 2024, China restricted the export of gallium, 
germanium and antimony – key minerals for semiconductor production – to the 
United States. Latest reports show that gallium prices outside China more than doubled 
between July 2023 and December 2024 (Financial Times, 2024). At the same time, China 
announced further export controls on graphite (essential for lithium-ion battery anodes). 
These were followed by additional export control announcements in February 2025 on a 
range of materials, including tungsten, tellurium, bismuth, indium and molybdenum – key 
minerals primarily used in high-technology and defence applications, including data centres 
(micro-processors and diodes). These developments underscore the need for vigilance of the 
security risks arising from high supply concentration. Disruptions to critical mineral supply 
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can have major impacts on technology and equipment costs for data centre development, 
with ripple effects for consumers and the broader economy (IEA, 2025a). 

Figure 5.5 ⊳ Geographical concentration of the supply of selected refined 
critical minerals needed for data centre expansion, 2024 

 
IEA. CC BY 4.0. 

The supply of many refined minerals essential to the construction of data centres is highly 
concentrated in a handful of regions, making supply chains vulnerable to disruptions 

Note: DRC = Democratic Republic of the Congo.  

5.2.3 Smart integration of data centres to mitigate risks 

Even in the Base Case, the buildout of data centres is remarkably rapid. In the United States, 
the region most affected, data centre total installed capacity increases from 6% of system-
wide peak electricity demand today to 13% by 2030. In the Lift-Off Case this rises to 16%. 
Data centres are poised to go from peripheral to central actors within the electricity system, 
with their share of peak demand comparable to that of the entire industrial sector of the 
United States in some of the cases (Figure 5.6). 

Although the absolute scale of the electricity supply and grid investments needed is not the 
most pressing issue, the speed of development is. The electricity system is subject to several 
critical bottlenecks that may make building out the system and connecting new data centres 
a challenge. These include stretched supply chains for critical components (see above), long 
lead times for generation and transmission projects, and complex and time-consuming 
permitting processes. Looking at these bottlenecks together, our analysis finds that around 
one-fifth of global data centre capacity additions could be delayed if they are not addressed. 
Connection queues for data centres are already long in several geographies. 
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Figure 5.6 ⊳ Data centres’ share of peak electricity demand and industry’s 
share of peak demand, United States  

 
IEA. CC BY 4.0. 

The installed capacity of data centres exceeds 10% of peak electricity demand in the 
United States in 2030 and exceeds that of the entire industrial sector in some cases 

Several actions are necessary to overcome these challenges: 

 Clarifying the connection queue and capacity ramps of data centres: Grid operators are 
often faced with multiple connection requests of uncertain credibility, as data centre 
developers seek approval in multiple markets. For data centres that are approved, the 
roll-out schedule for IT equipment within the data centre is often unclear, meaning that 
transmission system operators face an uncertain trajectory for actual demand. Utilities 
should implement policies and incentives that support the rationalisation of the 
connection pipeline and work together with developers to develop better visibility of 
roll-out schedules. Grid operators can also contribute to a robust information 
environment for investment decisions by providing tools such as grid capacity maps and 
clear grid expansion plans. 

 Accelerating permitting for new generation and grids: Recent years have seen a sharp 
policy focus in many jurisdictions on reducing permitting times for new electricity sector 
assets, and there has been some progress in this regard. However, there is still more to 
do. Regulators need to ensure they have adequate staff, resources and expertise and 
that permitting processes are clear and timely. They can also explore the potential role 
of AI tools in accelerating these processes. Identifying priority areas for data centre 
deployment and special procedures for project approvals within these areas could also 
be explored. Likewise, it is critically important that grid operators undertake robust long-
term planning and anticipate future load growth in their investment programmes and 
outlooks. 
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 Integrating data centres into the grid: Recent pilot projects highlight several areas that 
could be explored to make data centres more grid-friendly actors, and therefore 
facilitate their deployment. They include incentivising more grid-friendly locational 
choices, in particular for latency-tolerant AI loads; exploring the deployment of backup 
power, energy storage assets or captive power assets to reduce or make more flexible 
the connection with the grid; innovating new technologies that could be integrated into 
data centres to make them more flexible, such as thermal energy storage for cooling 
load management; and making data centre workloads more flexible, where possible. 
However, data centres are new actors in the electricity grid – at least at the scale being 
seen today. There is a need to enhance understanding among energy regulators and 
policy makers of their technical constraints, operational characteristics and sensitivity 
to policy incentives. It will be important for the energy sector to work with the 
technology sector to develop a shared “playbook” that respects the unique constraints 
faced by both actors while facilitating smarter integration of this important new load 
into electricity systems. 

5.3 Enhancing the dialogue between the technology 
sector and the energy industry 

5.3.1 Better understanding the outlook for demand 

The energy sector is faced with substantial uncertainty about how the demand outlook for 
AI and data centres will evolve. In all published scenarios for global data centre electricity 
demand, even for those published since 2020, there is a wide range of projections 
(Figure 5.7). Even data for the most recent years vary greatly: for 2023, the highest estimate 
published in these studies is three times the IEA’s estimate for global electricity demand from 
data centres in that year. For 2030, the highest scenario in these published studies is close 
to twice that in the IEA’s Lift-Off Case; and in the scenario literature, the highest is nearly 
seven times that of the lowest for 2030. 

This level of uncertainty in the outlook makes investment, infrastructure planning and policy 
making challenging. This is exacerbated by the difference in lead times between energy 
infrastructure and data centres. Some uncertainty in the outlook is inevitable, even for more 
established sectors such as renewable electricity generation; policies change, technologies 
evolve in non-linear ways, and economic or geopolitical events hold surprises. The problem 
is not so much uncertainty but rather the limited understanding of the current situation on 
the ground and what factors influence the outlook. Better understanding of these drivers 
would enable more coherent interpretations of real-world events and avoid sudden revisions 
in expectations (as the market saw with the release of DeepSeek-R1). 
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Figure 5.7 ⊳ Third-party scenarios of data centre electricity demand 
compared to IEA cases published in this report, 2010-2030  

 
IEA. CC BY 4.0. 

There is a sevenfold difference between the highest and lowest  
projection of energy demand from data centres for 2030 

Notes: TWh = terawatt hour. For an explanation of the cases used in this report (Base Case, Lift-Off Case, High 
Efficiency Case and Headwinds Case), please see Chapter 2, section 2.1.1. 

Source: IEA analysis based on Kamiya and Coroamă (2025). 

To mitigate uncertainty, stronger dialogue between the energy and technology sectors will 
be required on several topics: 

 Better characterising the link between AI demand and energy demand: Currently, 
comprehensive data are scarce on both the electricity consumption of different kinds of 
AI services, levels of real-world uptake and the future outlook for AI service demand. 
This makes it difficult for analysts to establish a link between real-world developments 
in AI (such as the release of DeepSeek-R1) and the outlook for energy demand. 
Projections for data centre electricity demand are only indirectly connected to AI via 
second-order variables, such as server shipments or gigawatts of installed data centre 
capacity. 

 Establishing methodologies for projecting electricity consumption from data centres: 
There is a wide divergence in assumptions for critical variables in modelling data centre 
electricity consumption, and frequent misinterpretation of the important variables, such 
as installed IT capacity versus maximum designed capacity, both in the media and in 
analytical studies. 1  The technology and energy sectors need to come together to 
develop and share common methodologies and definitions, catering for different levels 
of complexity, from the media discourse to academic studies. Some of these 

 
1 See Chapter 2, section 2.1.2 for definitions. 
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assumptions need to be informed by closer dialogue with the technology sector, but 
many are available in the academic literature, albeit in a dispersed and often non-
harmonised manner. The data and methodological annexes to this report are an effort 
in this direction. 

 Better data for analysis and decision making: Analysts looking to estimate or project 
data centre electricity consumption are hampered by a lack of data on numerous points. 
Most critical are shipments of both accelerated and conventional servers, historical data 
on the installed IT power of data centres and data on the data centre project pipeline. 
These data are available, but often only partially, and typically through expensive data 
licences from one or more third-party providers, which limits access and dissemination. 
Commercial operational data, such as power usage effectiveness, utilisation rates and 
idle power ratios, are useful, but for the purposes of energy modelling, industry 
averages by type of data centre and country are needed. Efforts are needed to gather 
and publicise this data to enable more robust analysis.  

5.3.2 Leveraging the innovation potential of the digital sector 

The digital sector is an important actor in energy sector innovation. Since 2015, it has been 
responsible for around 5% of total venture capital going to energy-related start-ups, although 
in some years its share has been as high as 20% (Figure 5.8). In recent years, digital sector 
venture capital spending has declined, following the broader trend of lower venture capital 
spending in energy start-ups in the face of tighter monetary conditions. 

Figure 5.8 ⊳ Venture capital investment by the digital sector in energy-
related start-ups, 2015-2024 

 
IEA. CC BY 4.0. 

Since 2015, the digital sector has been responsible for around 5%  
of venture capital funding going to the energy sector 
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Interesting patterns emerge when exploring more detailed allocations (Figure 5.89). Since 
2020, over two-thirds of digital sector corporate venture capital going to energy has focused 
on electrified transport and adjacent sectors such as lithium-ion batteries. Despite their 
growing importance as power consumers, only around 15% of digital sector venture capital 
has gone to electricity-related applications, and of this, the largest share went to nuclear 
fusion. Around 4% went to start-ups working on efficiency in data centres and information 
and communications technology (ICT) equipment. Digital sector venture capital investors are 
likely to be focused on technology areas where the potential for disruption using data-driven 
business models is perceived to be high. 

The digital sector innovates in other ways beyond its corporate venture capital spending, and 
its high capital expenditure incentivises innovation by others. The “big six” US-based digital 
companies spent around USD 250 billion on research and development (R&D) in 2024, up 
from USD 50 billion in 2015. They are also active in acquiring companies, some of which are 
energy-related (e.g. Waymo and Nest Labs were both acquired by Google). Their 
procurement strategies drive innovation in the electricity system (see Chapter 2). 

Figure 5.9 ⊳ Venture capital investments by digital firms in energy-related 
start-ups, detailed breakdown, 2020-2024 

 
IEA. CC BY 4.0. 

Over two-thirds of venture capital funding from the digital sector to  
energy-related start-ups went to electric mobility  

In the medium term, the digital sector will play a greater role in the energy sector as demand 
from data centres rises. Chapter 2 noted the challenges facing the electricity system in 
accommodating the rapid rise of data centres but also the opportunities for innovations at 
the system level (e.g. peak shaving and flexible data centre operations) and at the product 
level (e.g. thermal storage technologies) to help in this integration challenge. Leveraging the 
innovative firepower of the digital sector in this regard would benefit from closer dialogue 
with the energy sector to identify promising technologies and collaborations. 
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Box 5.3 ⊳ The technology sector, voluntary decarbonisation commitments 
and carbon credit markets 

Many technology companies have made strong commitments to sustainability, aiming to 
reduce their own emissions and those of their supply chains. Alongside low-emissions 
electricity procurement, investments in promising energy start-ups and their own R&D 
budgets, some technology companies are also buying carbon credits to offset their 
remaining emissions.  

Figure 5.10 ⊳ Credit retirements and advance purchase commitments of 
the top technology companies, 2020-2023 

  
IEA. CC BY 4.0. 

Technology companies, led by Microsoft, have purchased and retired mostly credits 
from carbon removal projects and formed coalitions to drive the demand forward 

Notes: CDRs = carbon dioxide removals; NBS = nature-based solutions. Dates reported are based on fiscal 
years observed in the United States. Results for Microsoft in fiscal year 2023 apply to 30 June 2023; results 
for Apple to 30 September 2023. Data on retirements include transactions made on the following 
registries: Verra's Verified Carbon Standard (VCS), Gold Standard, Climate Action Reserve and American 
Carbon Registry. Some retirements are anonymous, so the reported data may be underestimated. Data 
on coalitions include the collective pledges made by the coalitions, namely Frontier (Stripe, Google, 
Shopify, McKinsey & Company, Autodesk, H&M, JP Morgan Chase & Co., Workday and Salesforce), 
Symbiosis (Google, McKinsey & Company, Meta, Microsoft and Salesforce) and LEAF (Microsoft). 

Sources: IEA analysis based on Apple (2025), Microsoft (2024), Quantum Commodity Intelligence (2025), 
and CDR.fyi (2025). 

Technology companies have notably purchased carbon removal credits or made forward 
purchase commitments, with a mixed portfolio of technology-based removals (such as 
direct air carbon capture and storage) and nature-based solutions (such as reforestation 
projects). For instance, Microsoft has a goal to be carbon negative by 2030, intending to 
reduce and then remove the remaining carbon from the atmosphere that it emits, and 
to eliminate by 2050 all carbon emissions it has produced since its founding in 1975. 
Google has also committed to becoming net zero in 2030, and in 2024, it contracted for 
over USD 100 million worth of carbon removal for future delivery.  
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Technology companies are also participating in coalitions of buyers of credits, which 
intend to drive the market forward by signalling a greater demand for high-quality carbon 
removal credits. Examples include Frontier, comprising Google, Shopify and Stripe, 
among others, which made an advance market commitment to buy USD 1 billion of 
technology-based removals by 2030, and Symbiosis, comprising Google, Meta and 
Microsoft, among others, which pledged to purchase 20 million future nature-based 
solution credits by 2030. In March 2025 Amazon also launched its Sustainability Exchange 
initiative, which enables Amazon’s suppliers and other eligible signatories to purchase 
high-quality removal credits vetted by Amazon’s due diligence.  

Through their advance purchase commitments and coalitions, technology companies can 
play an important role in catalysing investment in carbon removal technologies. 
However, enabling policy frameworks and government support are still paramount for 
ensuring credible market development and scale. 

5.4 Implications for investment  
5.4.1 Data centre investment 

Investment is surging in new data centres and the capital-intensive IT equipment used for 
training and running AI models. An additional 64 GW of greenfield data centre IT load was 
built over the past decade, causing annual investment to grow from around USD 100 billion 
in 2015 to over USD 500 billion in 2024. Growth is expected to continue in the Base Case, 
albeit at a slower rate, surpassing USD 800 billion per annum before 2030 to accommodate 
another doubling of capacity in the next five years. As shown in Figure 5.11, this translates 
into USD 4.2 trillion of cumulative investment from 2025 to 2030 in the Base Case, and an 
additional USD 480 billion in energy capex. 

Data centre investment captures three categories of capital expenditure (capex), namely:  

 IT capex: Servers, networking, memory, and storage. 

 Non-IT capex: Building shell and other mechanical and electrical installations, such as 
cooling, transformers and uninterruptible power supplies. 

 Energy capex: New generation capacity, battery storage, and transmission and 
distribution to service additional energy demand from data centres. 

Non-IT-related capex is highly influenced by location and hence represents a variable 
component in total investment. The combined cost of construction and installations ranges 
from USD 6 000 per kilowatt of IT load in some emerging market and developing economies 
to over USD 10 000 in many advanced economies (Turner & Townsend, 2024).  

Higher spending on IT equipment – accelerated servers, in particular – is the key factor 
behind the marked acceleration of investment in recent years. With a relatively limited 
number of key suppliers, higher server prices are less affected by project location and are 
typically 10-30 times more expensive than conventional servers (SemiAnalysis, 2023). Data 
on IT equipment costs are rarely disclosed by companies and are highly project-specific, but 
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examples such as Amazon’s Mississippi data centre construction project demonstrate how 
quickly costs can escalate to accommodate expensive IT configurations: the total capital 
expenditure for the project was revised upwards by 60% only a year after its initial 
announcement in 2024 (Bloomberg, 2025). Compounding this trend is the relatively short 
lifetime of IT equipment. Whereas a transformer will typically last 30 years (IEA, 2023b), IT 
equipment can become obsolete four to six years after installation due to rapid technological 
progress, especially in frontier AI applications. This is shown in Figure 5.12 where capital 
outlay for the replacement of accelerated servers grows over time as the stock of brownfield 
data centres grows.  

Figure 5.11 ⊳ Global annual investment in data centres in the Base Case, 
2015-2030 

  
IEA. CC BY 4.0. 

Growing applications of expensive IT equipment have caused  
data centre investment to increase fivefold over the past decade 

Note: MER = market exchange rate.  

Source: IEA analysis based on SemiAnalysis (2023 and 2025). 

Figure 5.12 also shows how annual accelerated server investment by hyperscalers has grown 
from around USD 4 billion in 2015 to nearly USD 100 billion in 2024, with Microsoft, Meta, 
Amazon and Apple alone having earmarked over USD 300 billion in capex in 2025, primarily 
for the construction of data centres and IT equipment procurement (Financial Times, 2025). 
Accelerated server investment has also been rapidly growing for co-location and service 
providers.  

As shown in Figure 5.13, the largest investments in data centres are in the United States. 
Numerous factors contribute to this, including fiscal benefits for construction, proximity to 
technology and financial hubs, relatively inexpensive electricity and existing fibre 
connectivity. In the Base Case, cumulative data centre investment in the United States 
amounts to USD 2.4 trillion by 2030. This is more than 5% of the total fixed capital investment 
across this period. In the Lift-Off and Headwinds Cases, data centre investment is 
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approximately 30% higher and 36% lower, respectively, than in the Base Case. China, home 
to its own set of hyperscalers, such as Alibaba, Baidu, Huawei and Tencent, is expected to be 
the next-largest investor in data centres in the Base Case. China sees cumulative data centre 
investment of about USD 1.3 trillion in the Base Case to 2030 (just over 2% of China’s total 
fixed capital investment in this period). The rest of the world amounts to USD 1 trillion in the 
Base Case. 

Figure 5.12 ⊳ Share of global data centre investment by item in the Base Case, 
2015-2030 

 
IEA. CC BY 4.0. 

The share of total investment attributable to accelerated server capex increases  
from 10% in 2015 to 45% in 2030 as greenfield data centre building slows  

Notes: IT equipment costs, such as networking, storage, memory and server cooling, are allocated to the server 
level. Electrical and cooling includes uninterruptible power supplies; building cooling and heating, ventilation 
and air conditioning; transformers and switchgears; power distribution units and other electrical installations, 
such as lighting. Other includes backup generators and all other mechanical installations not covered under 
electrical. Non-hyperscaler includes co-location and internal data centres. Capex includes both greenfield and 
brownfield investment spending.  

Source: IEA analysis based on SemiAnalysis (2023 and 2025). 

Figure 5.13 also highlights that investment in additional generation capacity and 
transmission and distribution lines for data centres is expected to remain marginal relative 
to capital expenditure on data centre IT and non-IT equipment. This demonstrates how data 
centres are more capital intensive than energy intensive, which keeps their share of total 
power system costs low. Moreover, it also shows how capital expenditure specifically to 
reduce emissions from electricity consumption, such as through renewables and battery 
storage, is comparatively small next to the overall expected cost of a data centre. In total, 
the additional energy needs for data centres over the next five years equate to less than 4% 
of cumulative power sector investment, barring the United States where – due to the sheer 
volume of new IT load – data centres drive more than 15% of total power sector investment, 
as shown in Figure 5.14.  
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Figure 5.13 ⊳ Cumulative additional investment in data centres and energy for 
data centres by case and by region, 2025-2030 

  
IEA. CC BY 4.0. 

In the Base Case, the United States accounts for more than half of  
cumulative data centre investment over the next five years 

Notes: MER = market exchange rate. For an explanation of the cases used in this report (Base Case, Lift-Off 
Case, High Efficiency Case and Headwinds Case), please see Chapter 2, section 2.1.1.  

Source: IEA analysis based on SemiAnalysis (2023 and 2025). 

Figure 5.14 ⊳ Cumulative power sector investment for data centres in selected 
regions in the Base Case, 2025-2030 

  
IEA. CC BY 4.0. 

Investment to service additional data centre electricity demand is a small share  
of total power sector investment in every region except the United States 

Notes: MER = market exchange rate. Includes investment in utility-scale generation capacity, battery storage, 
transmission and distribution. 
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5.4.2 Potential for data centres to support electricity investment 

In total, technology sector companies were the financiers or acquirers of utility-scale low-
emissions power assets worth at least USD 1.5 billion between 2010 and the second quarter 
of 2024, contributing about one-quarter of the total financing for these projects (BNEF, 
2025). Although this number is likely to represent an underestimate, it is clear that owning 
power assets is not the preferred business model for data centre operators; instead, as 
shown in Figure 5.15, these companies more commonly support new clean energy projects 
indirectly by acting as an offtaker in corporate power purchase agreements (PPAs). Direct 
financing is therefore a small fraction of the total investment in new generation projects tied 
to corporate PPAs for data centres, implying that these assets are more commonly financed 
by conventional financial intermediaries and project developers. 

Figure 5.15 ⊳ Renewable power corporate PPAs by region and company type, 
2021-2025 

 
IEA. CC BY 4.0. 

The corporate PPA market is dominated by technology companies in advanced 
economies but has yet to take off in emerging market and developing economies 

Notes: PPA = power purchase agreement; EMDE excl. China = emerging market and developing economies 
excluding China; GW = gigawatt. China is not shown as its corporate PPA market is nascent. Values for each 
year correspond to the PPA start date, not PPA signing date.  

Source: IEA analysis based on BNEF (2025) Renewable Energy Project Database.  

Securing long-term and affordable finance is a major obstacle for emerging market and 
developing economies, where heightened macroeconomic risks and domestic capital 
constraints exacerbate challenges inherent to the cashflow profile of renewables projects. 
For example, insights from the IEA’s cost of capital observatory show that the cost of capital 
for clean energy projects in these economies is at least twice as high as it is in advanced 
economies and China (IEA, 2024b), often making financing prohibitively costly. Corporate 
PPAs have the potential to alleviate some of these challenges by providing project developers 
and financiers with more predictable cashflows. Although the strike price of corporate PPAs 
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is seldom disclosed, there is some evidence that technology companies are willing to pay a 
premium for low-emissions electricity (IEA, 2025b), and, as shown in Figure 5.16, most 
renewable capacity under PPAs in emerging market and developing economies has a tenure 
of at least 16 years and over 80% greater than 10 years. This provides more certainty to 
investors, but it can also create new risks for the renewable project developers.  For example, 
if a renewable project experiences a shortfall in generation, the renewable power generation 
company would need to purchase electricity at wholesale prices and pay the difference if it 
exceeds the PPA strike price. Hence, PPAs should be carefully designed or bundled into a 
portfolio of assets to manage any unexpected shortfalls in electricity generation. 

Figure 5.16 ⊳ Credit ratings for selected corporate PPAs and tenure of all 
corporate PPAs in EMDE  

  
IEA. CC BY 4.0. 

Data centres may make certain renewable projects more bankable  
due to more creditworthy offtakers and long-term contracts 

Notes: EMDE = emerging market and developing economies. The left graph represents distinct corporate PPAs 
in EMDE where (a) a data centre company is serving as the primary offtaker and (b) the local currency long-
term issuer default rating is available for the electricity distribution company. All credit ratings refer to issuer 
default ratings using the latest data available from Fitch Ratings or S&P Global Ratings, converted to the S&P 
Global Ratings scale. The bubble size corresponds to the project generation capacity in MW. The right graph 
includes all corporate PPAs signed in EMDE irrespective of the offtaker type for PPAs where the tenure is 
disclosed.  

Sources: IEA analysis based BNEF (2025) Renewable Energy Project Database and Fitch Ratings (2019, 2024a, 
and 2024b). 

In certain contexts, corporate PPAs can also support market development by reducing 
offtaker risk. The credit worthiness of offtakers is a crucial factor for determining the cost of 
finance or whether a project receives a final investment decision at all, especially when 
borrowing is conducted in a foreign currency – most likely US dollars. Figure 5.16 provides 
multiple examples of corporate PPAs signed in Latin America, South Africa and Indonesia, 
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to traditional offtakers. For example, as shown in Figure 5.16, over 500 megawatts (MW) of 
PPAs saw a 6 (AA vs. BBB) to 12 (AA vs. B) notch difference between the default rating of the 
corporate offtaker (a technology company) and that of the local electricity distribution 
company. In cases such as these, data centres could attract new sources of private finance 
to regions where it is needed, thereby providing a helpful pull from the demand side to 
develop nascent markets for mature technologies such as solar and wind. 

Nevertheless, data centres are unlikely to fundamentally alter the environment for 
renewables investment in most emerging market and developing economies, and supportive 
policies will also be required. Figure 5.17 shows that transmission and distribution projects 
account for a greater share of energy capital expenditure than new generation capacity. Due 
to their size, long payback periods, tariff structures, complicated regulatory environments, 
and a lack of investor familiarity, these projects only magnify risks and hence are uniquely 
challenging to finance. State-owned enterprises are often the primary sponsors of grid 
projects, and development finance institutions have provided an average of 3-7% of annual 
finance for transmission and distribution in emerging market and developing economies 
other than China since 2015. Data centres might be a catalyst for greater private sector 
involvement in grid financing. For example, in the United States, energy utilities are adjusting 
tariff structures to include long-term financial commitments from large-load customers, such 
as data centres, to help pay for additional infrastructure costs (American Electric Power, 
2024). However, the need for additional infrastructure underscores the importance of 
creating an enabling environment to deploy timely finance at scale.     

Figure 5.17 ⊳ Implications of additional data centre load for cumulative power 
sector investment for selected cases and regions, 2025-2030 

  
IEA. CC BY 4.0. 

Most energy investment needs for data centres are due to grids, not new generation 
capacity 

Notes: EMDE = emerging market and developing economies. For an explanation of the cases used in this report 
(Base Case, Lift-Off Case, High Efficiency Case and Headwinds Case), see Chapter 2, section 2.1.1. 
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5.5 Are digital skills in the energy sector a bottleneck? 

In recent years AI systems have advanced rapidly, and while businesses and individuals are 
increasingly adopting them, their exact applications and the skills required to harness their 
potential remain uncertain. Ensuring that the energy sector has AI-literate workers, whether 
within organisations or as external collaborators, will be essential for recognising and 
developing potential use cases (see Chapter 3). This section explores how AI skills are being 
integrated into the energy sector today, as well as the challenges and barriers the industry 
may face in acquiring and developing them. 

5.5.1 Demand for AI and digital skills in the energy sector 

Demand for AI and digital skills is growing in the energy sector but more slowly than 
elsewhere in the economy. The call for digital skills within the energy sector was already high 
and on the rise before the significant uptick in attention on AI. Labour market indicators, 
such as job postings (a proxy measure for the demand for selected skills), reflect the growing 
demand for digital skills in the energy sector. For example, the share of job postings requiring 
at least one digital skill in four key energy sectors – batteries, utilities, wind and energy 
efficiency – increased on average by 20% between 2018 and 2023 in the United States and 
the United Kingdom (Figure 5.18).   

Figure 5.18 ⊳ Share of job postings requiring at least one digital skill, 
United States and United Kingdom, 2018 and 2023 

 
IEA. CC BY 4.0. 

The demand for digital skills has been growing in recent years in key energy sectors 

Notes: EV = electric vehicle. Skills are extracted and categorised from job postings using natural language 
processing, identifying mentions of skills from the job descriptions. To identify jobs related to the chosen 
technologies (batteries and EVs, utilities, energy efficiency and wind), data were extracted using a combination 
of text search in the job title and a filter on the occupational code. 

Source: IEA analysis based on Lightcast data (2024). 
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While demand for AI and digital skills is increasing in the energy industry, it is not rising as 
fast as in other sectors. Analysis of job postings that require AI skills as a percentage of all job 
postings in the United States reveals that selected energy sectors have been slower to post 
a significant share of jobs requiring AI skills (such as machine learning or natural language 
processing) than some sectors such as public administration. One reason for this may be that 
energy employers are not yet prioritising AI and digital skills in hiring due to unclear use cases 
and applications of AI. This also comes at a time when many parts of the energy sector are 
reporting an acute shortage of hard technical skills related to project design, engineering and 
operation. This is reflected in a survey conducted by the IEA with over 190 energy companies, 
where technical skills were identified as the most important hiring criterion, ranking above 
both soft skills and digital skills (IEA, 2024c).  

As a result, the prevalence of workers with AI skills in the energy sector ranks lower than in 
other parts of the economy. Analysis on the concentration of AI talent, measured from self-
reported skills on LinkedIn, showed that utilities and the oil, gas and mining sectors saw lower 
levels of AI skills than other sectors across 43 countries (Figure 5.19). Between 2018 and 
2024, the concentration of AI talent in utilities and oil, gas and mining was on average 40% 
lower than in education, financial services, professional services, and technology, 
information and media. 

Figure 5.19 ⊳ AI talent concentration by selected country and sector, 2024 

 
IEA. CC BY 4.0. 

The adoption of AI-specific skills has been slower in certain segments  
of the energy sector compared to other industries 

Notes: TIM = technology, information and media. A LinkedIn member is considered “AI talent” if they have 
explicitly added at least two AI skills to their profile and/or they have been employed in an AI job. AI skills 
include, among others, machine learning, artificial intelligence, image processing, neural networks, natural 
language processing, predictive modelling and deep learning. “AI talent concentration” is calculated by 
dividing the counts of AI talent in a country by the counts of LinkedIn members in that respective country 
(LinkedIn, 2025). 

Source: IEA analysis based on LinkedIn data (2025). 
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5.5.2 Barriers to developing AI literacy in energy firms 

Unclear use cases and high costs are creating barriers to developing AI literacy in energy 
firms. Greater AI literacy within energy firms will be important for developing and identifying 
compelling use cases and implementing them appropriately. This is because identifying 
valuable AI use cases requires both industry knowledge to recognise operational challenges, 
as well as digital expertise to evaluate and implement the right AI solutions – or reject them 
if they are unsuitable. At the economy-wide level, European firms cited the lack of expertise 
as the main issue holding back the adoption of AI (Eurostat, 2025). In the IEA’s employer 
survey, only half of the respondents perceived that candidates are meeting the growing 
demand for digital skills. Digital and AI literacy training within firms could accelerate the 
uptake of AI in the energy sector, as could integrating similar training into energy-related 
curriculums and certifications. 

Figure 5.20 ⊳ Median entry-level salaries by occupation in technology and 
energy companies in the United States and Canda, 2024 

 
IEA. CC BY 4.0. 

Salary discrepancies between technology and energy companies may hinder 
 the direct hiring of workers with AI-related skills in the energy sector 

Notes: ML and AI = machine learning and artificial intelligence. Technology refers to companies such as 
Microsoft, Google, Amazon and Salesforce. Energy refers to energy and automotive companies such as 
ExxonMobil, BP, Shell, Toyota and Tesla. 

Source: IEA analysis based on Levels.fyi (2025). 
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on average 30% higher in the technology sector than in energy companies (Figure 5.20). 
Some companies may be better positioned than others to access skilled AI specialists – oil 
and gas, for instance, offer salaries much more comparable to the technology industry, while 
regulated utilities may be at a disadvantage. Consultancy-based models may emerge as one 
pathway for a wider range of energy firms to access AI specialists.  

Some parts of the energy sector have identified viable use cases and are beginning to 
implement AI tools (see Chapter 3). As with any wave of technological improvement, this 
may yield changes in the types of skills required of energy workers in the future. AI 
integration can affect the workforce in various ways, ranging from job displacement to 
upskilling and reskilling. While automation could reduce labour needs and labour costs in 
some areas, increased productivity and quality have emerged as the primary expected 
benefits based on today’s known AI capability. Most energy companies surveyed by the IEA 
identified increased output and shorter project development cycles as the most significant 
outcome of AI (Figure 5.21). In addition, the automation of tasks does not necessarily result 
in job losses or redundancies but rather a shift in the nature of work, requiring individuals 
and organisations to rethink job roles. This transformation calls for reskilling and upskilling 
initiatives to equip workers with new competencies. An inventory of potential AI-related use 
cases could be an important input to inform future workforce and skills development 
planning exercises carried out by firms, as well as strategic planning for other stakeholders, 
including education, government and labour representation. 

Figure 5.21 ⊳ Energy company views on the greatest long-term benefits 
expected from expanded AI use  

 
IEA. CC BY 4.0. 

Over 190 energy companies identified increased productivity and quality  
as the primary expected benefits of AI use based on existing applications  

Source: IEA (2024c). 
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5.6 Bridging the digital divide: The energy-AI nexus in 
emerging market and developing economies 

Emerging market and developing economies encompass a wide spectrum of countries – from 
those with cutting-edge technology hubs to those with limited basic infrastructure. Many are 
still grappling with limited Internet connectivity, prohibitively high data costs and low digital 
literacy. While the extent of these issues differs greatly across regions and countries, among 
emerging market and developing economies, only around 60% of the population currently 
have access to reliable Internet, and households spend on average 10 times more of their 
income on fixed broadband than in advanced economies. These constraints pose major 
hurdles for AI applications in energy – from remote sensor monitoring to advanced analytics 
– where continuous data exchange and reliable Internet access are often prerequisites. 

Figure 5.22 ⊳ Key economic and ICT-related metrics in advanced economies, 
China and other EMDE, 2024 

 
IEA. CC BY 4.0. 

While emerging market and developing economies make up the majority of the world’s 
Internet users, advanced economies dominate the ICT sector and data centres 

Notes: EMDE = emerging market and developing economies. GDP = gross domestic product; ICT = information 
and communication technology. Value added (ICT) is the difference between the gross output and 
intermediate consumption in the ICT sector in US dollars. Further information on the data and economies 
included in value added (ICT) can be found at World Bank (2023). 

Source: IEA analysis based on World Bank (2023). 
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building up energy and digital capacities. This synergy is particularly pertinent in regions such 
as Africa, where large and growing youth populations are spurring demand for digital services 
and new job opportunities. With baseline contexts varying immensely between countries, 
tailored approaches are needed to harness AI’s potential. 

5.6.1 Power reliability as a barrier in emerging market and developing 
economies  

Data centres are the bedrock of AI services, but many emerging market and developing 
economies face electricity supply challenges that complicate local hosting. In regions with 
frequent outages (Figure 5.23), maintaining a data centre often demands costly backup 
power systems, making overseas hosting or cloud services more appealing for businesses. 
While cutting-edge hardware is not always essential – some AI tasks can run on older-
generation chips and IT equipment – dependable electricity is non-negotiable for any data 
infrastructure. 

Figure 5.23 ⊳ End-user power supply interruption indicators by country/region, 
2016-2020 average 

   
IEA. CC BY 4.0. 

Emerging market and developing economies experience significantly higher power supply 
interruptions, with some regions facing outages exceeding 700 hours per year 

Notes: EMDE = emerging market and developing economies; SAIDI = system average interruption duration 
index. Other EMDE excludes high-outage EMDE. High-outage EMDE comprises all countries with more than 
100 annual outage hours on average per customer over the 2016-2020 period. EIA data were used for the 
United States, and World Bank data were used for all other countries. World Bank data are based on surveys. 
US data include interruptions from major events. Given the possible differences in reporting standards and 
coverage, the values presented refer to general trends and do not necessarily reflect precise comparisons 
between countries. 

Sources: IEA analysis based on World Bank (2020) and US EIA (2023). 
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In some such countries, it is not unusual for remote communities to experience severe power 
scarcity, even as new data centre investments intensify competition for local energy demand. 
This reality underscores the critical need for reliable, locally sourced electricity to bridge the 
digital and energy divides in emerging markets. 

Emerging market and developing economies that seek to establish domestic data centres – 
for AI and otherwise – therefore need to address power reliability and affordability issues. 
Scaling up power generation capacity to meet demand from all consumers, and specifically 
for data centres, becomes vital. Furthermore, in the context of ambitions stated by 
governments in various emerging market and developing economies to scale up renewable 
energy projects, technology companies may be able to provide a demand anchor for 
renewable power projects. Major technology firms in advanced economies have already 
demonstrated how long-term PPAs can catalyse large-scale solar and wind installations. 
Similar models could be replicated in middle-income countries, where data centres serve as 
anchor customers, stabilising demand for clean energy. Nonetheless, the feasibility of these 
partnerships depends on local grid conditions, investment climates and regulatory 
environments, all of which differ significantly across these countries. 

5.6.2 The role of AI applications in the energy sector in emerging market 
and developing economies  

Much like in advanced economies, AI applications have the potential to help the energy 
sector in emerging market and developing economies achieve a wide range of optimisations. 
For example, many of these countries contend with ageing grids and inefficient distribution 
networks, leading to high technical losses. AI-enabled tools – such as predictive maintenance 
and advanced load forecasting – can help cut these losses, reduce operating costs and 
integrate more renewables, which are the lowest-cost generation options for most countries. 
The share of renewable electricity generation capacity in such countries is on track to rise to 
almost three quarters (55% if excluding China) over the next decade. Even incremental 
improvements in grid management can have considerable benefits, particularly in countries 
with strained public finances and growing energy demand. In emerging market and 
developing economies excluding China, electricity demand is on track to rise faster than in 
advanced economies over the next decade, with EV sales set to increase nearly sixfold, the 
stock of air conditioners set to grow by more than half a billion units and a surge in the sales 
of devices, battery storage and more. As this reshapes load profiles, AI will be essential for 
managing complexity, improving supply and demand balancing and supporting demand-side 
management. 

We explored the impact of the widespread adoption of known AI applications (see Box 3.1 in 
Chapter 3 for the methodology) on energy savings as one metric of energy sector 
optimisations in emerging market and developing economies. Owing to a range of 
challenges, the role of AI applications in achieving energy savings remains lower than activity 
levels in the three key end-use sectors of industry, buildings and transport (Figure 5.24). 
These challenges include the lack of digitalisation, the lack of competition to bring in new 
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technologies and approaches, the lack of ambitious energy efficiency regulation to 
incentivise the adoption of new technologies and so on.  

Figure 5.24⊳ Share of energy savings from AI applications in the Widespread 
Adoption Case, 2035 

 
IEA. CC BY 4.0. 

Due to a range of barriers, energy savings from the widespread adoption of known AI 
applications in the energy sector in EMDE remain lower than activity levels  

Note: EMDE = emerging market and developing economies. 

Another major challenge is that AI models are often trained on datasets from advanced 
economies and designed for applications in those contexts, which may not fully capture the 
realities of emerging market and developing economies. Investing in local data collection will 
be fundamental to accelerating AI adoption in such economies, bridging the gap with more 
advanced markets and ensuring they fully benefit from AI-driven innovation and 
development. This mismatch can introduce biases or inaccuracies, limiting the effectiveness 
of off-the-shelf AI solutions. Conversely, AI can help fill critical data gaps by leveraging 
satellite imagery, remote sensing and local sensor data to map underserved regions and 
refine demand projections. These capabilities can be pivotal for countries striving to expand 
off-grid solutions or plan new transmission lines more effectively. 

More recently built factories, infrastructure and buildings could also enable emerging market 
and developing economies to leapfrog older developments by applying AI solutions faster. In 
certain cases, it can be easier to equip a new factory or building with sensors and energy 
management systems rather than retrofitting much older stock with long lifetimes in 
advanced economies. There are already promising use cases: for example, in India, a 
multinational IT company introduced an AI-powered building energy management system 
(Infosys, 2024), and Dorf Ketal, a chemical company, optimised the furnace run length in a 
steam cracker by applying AI (Digital Refining, 2024). In Morocco, AI algorithms have been 
used to optimise processes in the paper industry (Batouta, Aouhassi and Mansouri, 2024).  
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5.6.3 Overcoming diverse barriers and laying the policy groundwork for 
inclusive AI in energy 

Despite considerable potential, AI uptake in the energy sectors of emerging market and 
developing economies faces a range of hurdles – limited local expertise, high capital costs 
and uneven connectivity among them. Some economies have relatively mature ICT sectors 
that could readily adopt AI tools, while others require more foundational investments in 
power and broadband infrastructure before AI can be deployed at scale.  

Survey data on household adoption of generative AI reveals that adoption is globalised – 
where the Internet and other supportive infrastructure are available. As a share of the online 
population, over 50% of survey respondents report using generative AI at least weekly, even 
in many emerging market and developing economies (Figure 5.25). Indeed, it seems that 
people in such economies use generative AI more than people in advanced economies – at 
least when the survey sample is restricted to people who are already online. However, a 
significant share of the population in lower-income countries does not have regular access 
to the Internet. When the survey results are adjusted to reflect this, unsurprisingly, usage 
rates of ChatGPT fall in lower-income countries. The results suggest that access to generative 
AI has become highly globalised only a few years after the release of the first genuinely mass-
market application, being widely adopted across different cultural contexts, subject to access 
to enabling infrastructure.  

Figure 5.25 ⊳ Share of the population reporting at least weekly use of ChatGPT 
in selected countries versus GDP per capita 

 
IEA. CC BY 4.0. 

Generative AI adoption is already highly globalised,  
but adoption rates also depend on access to online infrastructure 

Note: PPP = purchasing power parity.  

Sources: IEA analysis based on GPO-AI (2024) and World Bank (2024a, 2024b). 
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As people and businesses in emerging market and developing economies remain open to 
adopting the latest available tools in their daily lives and processes, the prospect of 
leapfrogging older technologies remains alluring. Just as the mobile phone revolution 
bypassed landline expansion, AI-driven applications may enable some of these economies to 
sidestep legacy systems and adopt cutting-edge energy management solutions directly. 
Governments can encourage this by integrating AI objectives into national energy strategies, 
promoting local AI skills development through partnerships with universities, training centres 
and research centres, and offering clear incentives for private-sector involvement. Blended 
finance mechanisms – combining concessional loans, guarantees and private capital – could 
also help mitigate risks for projects aiming to build both digital and energy infrastructure. 

Ultimately, each country requires customised solutions that reflect its unique mix of 
resources, markets and regulatory contexts. For some, attracting data centres through 
reliable green power could be a catalyst for modernisation; for others, the priority might be 
smaller-scale digital tools that bolster rural electrification or reduce transmission losses. In 
all cases, addressing both energy and digital connectivity gaps together is crucial. By fostering 
local data collection, developing talent and creating robust policy frameworks, emerging 
market and developing economies can harness AI to drive more inclusive, future-proof 
growth – growth that integrates renewable energy expansion, meets rapidly rising demand 
and supports new industries in the process. 

5.7 The AI and energy policy landscape 

The growing role of AI in the global economy in recent years has led to an evolving policy 
landscape. As of 2025, most economies have adopted a national AI strategy. Recently 
adopted strategies have focused notably on creating frameworks to foster AI development 
and use in national economies, including the energy sector. This section looks at national 
policy frameworks and their impacts on the AI–energy nexus. 

5.7.1 The enabling role of government in AI development 

National AI strategies often involve government financial support for the emergence of an AI 
industry. As it stands, support generally focuses on three main components: the 
development of AI models and use through research and development (R&D) programmes, 
direct support for data centre development, and domestic incentives for manufacturing 
chips and semiconductors. For example, Japan invested USD 13 billion in 2023 alone to build 
the foundations of a semiconductor and AI-related technology sector (Japan, Ministry of 
Finance, 2024) part of its pledge to invest JPY 10 trillion (USD 65 billion) by 2030 (The Japan 
Times, 2024).  

R&D has grown sharply in recent years, with close to USD 7 billion of disbursement from 
governments for AI-related R&D projects in 2023, close to three times the amount spent in 
2018. This growth can be attributed to three main regions: the United States, the 
European Union and China (see Chapter 4). However, future plans indicate a broadening of 
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this trend. Brazil recently published its Artificial Intelligence Plan 2024-2028, with a key 
objective to boost its R&D in this area by earmarking USD 4.6 billion in the next four years 
(Brazil, Ministry of Science, Technology and Innovation, 2024). Egypt also released its Second 
National AI Strategy in 2025, with the objective of creating a national AI fund equivalent to 
USD 430 million to USD 860 million (Egypt, The National Council for Artificial Intelligence, 
2025).  

In 2024, India facilitated the creation of three AI Centres of Excellence worth USD 120 million 
(India, Ministry of Electronics and IT, 2025) and launched the IndiaAI Mission and its Semicon 
India programme, with an initial budget of USD 9.2 billion to accelerate the uptake of AI 
infrastructure and necessary components such as microchips (India, Ministry of Electronics 
& IT, 2024). 

Figure 5.26 ⊳ Government R&D for AI-related projects in digital software and 
innovation  

 
IEA. CC BY 4.0. 

R&D surged in all regions in the past five years,  
from USD 2.6 billion in 2018 to more than USD 7.0 billion in 2023 

Notes: R&D = research and development. Government R&D includes primary and secondary AI projects.  

Sources: IEA analysis based on the respective government websites and Archaya and Arnold (2019), and China 
Central Government (n.d.). 

Korea’s Restriction of Special Tax Treatment Act incentivises data centre development 
through tax credits of up to 12% of facility investment costs for AI and cloud companies 
(Ministry of Economy and Finance of Korea, 2023). China also provides significant tax breaks 
with its High and New-Technology Enterprise status, which involves reduced corporate 
income tax rates from 25% to 15% (The State Council of the Peopl's Republic of China, 2019). 
Thailand’s Board of Investment offers substantial long-term tax incentives, up to 13 years of 
tax exemption from machinery to raw material import duties (Thailand Board of Investment, 
2025). 
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5.7.2 Energy and AI policy frameworks 

As noted above and in Chapter 2, data centres bring both opportunities and challenges for 
the grid. Policy frameworks have started being developed to incentivise data centre 
development outside areas of grid congestion (W Media, 2023a). The Korean Government 
offers a 50% discount on the electricity facility levy to data centres built outside the Seoul 
metropolitan area (W Media, 2023b). Beyond incentives, some jurisdictions impose stricter 
rules on data centre expansion, for example through energy performance requirements or a 
moratorium in some cases. In 2018, Beijing banned the construction or expansion of data 
centres in the city, except for cloud computing data centres with a power usage effectiveness 
(PUE) of 1.5 or less (The People's Government of Beijing Municipality, 2018). The Netherlands 
and Singapore imposed a moratorium on data centres in 2019 as they were reconsidering 
their data centre strategies with the influx of data centres – both moratoriums have since 
been lifted (Data Centre Dynamics, 2022; The Straits Times, 2022). In South Africa, the 
National Policy on Data and Cloud has designated locations for data centres to reduce stress 
on the national grid (Republic of South Africa, 2024). The Electric Reliability Council of Texas 
recently enabled a Large Load Revision Request Package requiring certain information about 
all loads to ensure a more rational load queue and encourage flexibility (The National Law 
Review, 2025). 

Several countries have mandated minimum energy performance standards. These 
performance standards specifically focus on the PUE, or the ratio between the power 
consumption of the whole facility against the consumption of the IT equipment. The National 
Australian Built Environment Rating System, in place since January 2025, is the first and only 
mandatory labelling programme for data centres, ranging between a PUE of 1.07 (6 stars – 
market leading) to 2.42 (1 star – making a start). Requirements can be downscaled to IT-
specific equipment like data storage, network equipment and servers (NABERS, 2024). The 
2019 EU regulation on ecodesign requirements for servers and data storage products 
imposes both power efficiency requirements (gradually increasing between March 2020 and 
January 2023) and material efficiency requirements for data storage devices, memory and 
processors. Germany expanded the scope of the energy reuse factor, which only accounts 
for reused heat and energy, requiring facilities to reach 10% in 2026 and 15% by 2028 
(Germany, Federal Ministry for Economic Affairs and Climate Action, 2023).  

Table 5.1 ⊳ Data centre energy efficiency mandates for selected economies 

Region PUE (2023) PUE mandate 
Australia 1.44 1.4 by 2025 
China 1.56 1.5 by 2025 
France 1.36 40% building energy use reduction by 2030 
Germany 1.42 1.2 by 2026 (new), 1.3 by 2030 (existing) 
Japan 1.53 1.4 by 2022 
California (United States) 1.21 1.5 by 2014 

Global 1.43 - 

Note: PUE = power usage effectiveness.  

Sources: Based on government websites and Masanet (2024). 
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Table 5.2 ⊳ Policy landscape in selected economies 

Economy National 
strategy 

 Government  
financial support  Reporting requirements  Performance 

mandates 

 
R&D Data 

centres Chips  Emissions Electricity 
consumption  PUE WUE 

Argentina ⬤           

Australia ⬤  ⬤ ⬤   ⬤ ⬤  ⬤  

Brazil ⬤  ⬤ ⬤ ⬤       

Canada ⬤  ⬤ ⬤ ⬤  ⭘ ⭘    

China ⬤  ⬤ ⬤ ⬤   ⬤  ⬤ ⬤ 
European Union ⬤  ⬤ ⬤ ⬤  ⬤ ⬤    

France ⬤  ⬤  ⬤  ⬤   ⬤  
Germany ⬤  ⬤  ⬤  ⬤ ⬤  ⬤  

India ⬤  ⬤ ⭘ ⬤       

Indonesia ⬤  ⬤ ⬤ ⬤       

Italy ⬤  ⬤  ⬤  ⬤     

Japan ⬤  ⬤ ⬤ ⬤  ⬤ ⬤  ⬤  

Korea ⬤  ⬤ ⬤ ⬤       

Mexico ⬤           

Russian Federation ⬤  ⬤ ⬤   ⬤     

Saudi Arabia ⬤  ⬤ ⬤ ⬤       

South Africa ⬤  ⬤         

Türkiye ⬤  ⬤ ⬤ ⬤  ⬤     

United Kingdom ⬤  ⬤ ⬤ ⬤  ⬤ ⬤    

United States ⬤  ⬤ ⬤ ⬤  ⭘ ⭘  ⭘  

Notes: ⭘ = subnational only; PUE = power usage effectiveness; WUE = water usage effectiveness. 

Reporting requirements for data centres are on a voluntary basis in most jurisdictions as of 
2025, but some mandatory schemes are being developed (see Table 5.1 and 5.2). The EU 
Corporate Sustainability Reporting Directive notably entered into force in 2023 and requires 
direct and indirect greenhouse gas emissions reporting from large and listed companies, that 
is, including emissions from electricity consumption or data provider subsidiaries. The Energy 
Efficiency Directive sets annual reporting obligations across 31 metrics for data centre 
owners and operators, and the implementation of certified energy management systems, 
such as ISO 50001, for large energy users, replacing the previous four-year audit 
requirement. The Delegated Regulation 2024/1364 set reporting requirements for data 
centres specifically on PUE and a water usage effectiveness (WUE) metric (Box 5.4 contains 
a discussion on water use by data centres). Singapore reformed its Green Data Centre 
Standard in 2020 to meet the ISO 50001 standard for energy management. Canada’s Energy 
Star voluntary programme provides its own certificate for each piece of data centre 
equipment, including data storage, large network equipment, servers and uninterruptible 
power supplies.  
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Hardware efficiency is key, yet software efficiency is discussed only in a handful of countries. 
Mitigating the rise in data centre energy demand could focus on fostering the efficiency of 
AI services themselves. This can take various forms, from smaller models requiring fewer 
parameters to optimised AI model training. In June 2024, France published benchmarks for 
measuring and reducing the environmental impact of AI, with 26 recommendations and best 
practices for the conception and development of AI models.  

Box 5.4 ⊳ Water use by data centres: How thirsty is AI? 

Data centres require large amounts of water – both directly for cooling onsite as well as 
indirectly for water consumption associated with semiconductor manufacturing and 
energy supply. Water use varies significantly by data centre, depending on the cooling 
technology, the local climate and the source of electricity supply. For example, direct 
expansion cooling (which accounts for around four-fifths of cooling in enterprise data 
centres) is many times less water intensive than airside economiser and adiabatic cooling 
with water-cooled chillers (used in about half of hyperscale data centres).2 Based on 
estimates of the current breakdown of cooling technologies, we estimate that on average 
a 100 MW hyperscale data centre in the United States consumes around 2 million litres 
per day in total – equivalent to about 6500 households – with over 60% of this being 
indirect water use. 

We estimate that global water consumption for data centres is currently around 
560 billion litres per year, and this could rise to around 1200  billion litres per year in 2030 
in the Base Case (Figure 5.27). Global water withdrawals3 for data centres show a similar 
steep increase to 2030. About two-thirds of the consumption in 2023 was associated with 
primary energy supply and electricity generation, a further one-quarter with direct 
cooling and the remainder for water used in semiconductor and microchip 
manufacturing. 

A number of factors determine overall water intensity, and this changes the relative 
water demands associated with direct and indirect operations over time. For energy 
supply, water withdrawals depend heavily on the mix of technologies used for electricity 
generation, with solar PV and wind using one-hundredth of the water that fossil sources 
use, or less (IEA, 2016). This means that the water use associated with energy supply is 
growing more slowly than data centre electricity demand, as more electricity is being 
generated from renewable sources. Conversely, at the manufacturing stage, almost 90% 
of water consumption is associated with ultra-pure water production, needed to produce 

 
2 In direct expansion cooling, refrigerant circulates directly through indoor coils to cool the data centre air.  In 
airside economiser and adiabatic cooling with water-cooled chiller cooling, water evaporates directly to 
provide cooling supplemented by water-cooled chiller systems, which use cool water drawn from natural 
resources or produced by cooling towers. 
3  Withdrawals are the total amount of water withdrawn from sources including surface water and 
groundwater. Consumption represents the portion of withdrawals not returned to the original water source 
after use but lost, e.g. through evaporation. 
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microchips from semiconductors. In the Base Case, water consumption from chip 
manufacturing for data centres grows more than 50% from 2023 levels to around 
70 billion litres in 2030 – faster than new servers are added to data centres – driven by 
an increasing number of accelerated servers, which tend to contain more chips than 
conventional servers.4  

Figure 5.27 ⊳ Water withdrawals and consumption for AI in the Base Case, 
2023 and 2030 

 
IEA. CC BY 4.0. 

Water consumption more than doubles between 2023 and 2030 

Notes: Assumes a fixed water use per area of wafer area between 2023 and 2030. Assumes direct WUE 
by cooling technologies equivalent to 2023. Water requirements are quantified for “source-to-carrier” 
primary energy production (oil, gas, coal and hydrogen), a definition which includes production, 
processing and transport. Water withdrawals and consumption for bioenergy account for water use for 
processing. For electricity generation, freshwater requirements are for the operational phase, including 
cleaning, cooling and other process-related needs. Electricity generation includes fossil fuels, nuclear, 
modern bioenergy and renewables waste, solar PV, concentrating solar power, wind and geothermal.  

Sources: IEA modelling and analysis based on Harris, et al. (2019), Hamed et al. (2022), IEA (2016), Lei, et 
al. (2025), Lei and Masanet (2022), and Shehabi, et al. (2024). 

In some countries, such as the United States, withdrawals for data centres today equate 
to less than 10% of annual municipal water withdrawals, but elsewhere, the water 
demands of data centres could compete with water for agricultural irrigation and 
municipal uses and even impact the supply chains that underpin microchip 
manufacturing. In Chinese Taipei, for example, semiconductor manufacturers were 
subject to water restrictions during a drought in 2021, requiring water use reduction 
strategies to be implemented. Around half of the consumption by 2030 is in Asia Pacific 

 
4 While recycling efforts and water efficiency measures could reduce water use, there is also evidence that 
advanced chip manufacturing has higher than average water intensity, and large chip manufacturers have 
reported increased water use per wafer since 2020. 
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countries, where a typically warm and humid climate makes cooling more water 
intensive. For instance, Microsoft estimated that the water use effectiveness (WUE)5 for 
direct cooling in Asia Pacific was 1.65 litres per kilowatt hour (kWh) – more than 
three times the global average of its data centres of around 0.5 litres per kWh (Microsoft, 
2022). In Europe, the Climate Neutral Data Centre Pact, signed by 97 operators and 
associations, targets a reduction in WUE to less than 0.4 litres per kWh by 2040 (Climate 
Neutral Data Center, 2023).  

The number of people exposed to water stress is set to increase by at least 50% by 2050 
with climate change (Munia, et al., 2020). Siting new data centres in areas of low water 
stress is a straightforward way to ensure sustainability ambitions are met, but innovation 
could also help quench the water needs of data centres and ensure that data centres are 
not adding to water stress risks in a warming climate. For example, direct liquid cooling 
(where liquid coolants circulate directly through servers with a coupling to a heat 
exchanger) and immersion cooling (where servers are submerged in a non-conducting 
dielectric fluid) can reduce direct water consumption significantly (Kong, et al., 2024). 
Operators including AWS and Google have pledged to be “water positive” by 2030, by 
combining recycling and replenishment programs with reductions in the direct WUE of 
their operations. (Google, 2024; Amazon, 2023).  

Semiconductor manufacturing facilities are also making headway. By adjusting the design 
of rinse tanks, ultra-pure water use can be reduced and, increasingly, manufacturers are 
installing onsite water recycling technologies. AI can also play a role in improving WUE 
by dynamically adjusting cooling requirements based on real-time data and predictive 
algorithms. AI has applications in desalination technologies (see Chapter 4), which could 
help expand the supply of usable water for cooling in coastal regions. AI could also help 
address water stress risks in the economy as a whole via improved resource 
management, such as predictive analytics for leak detection, smart irrigation and the 
optimisation of water infrastructure.  

5.8 An exploratory approach to determine the potential 
impact of AI on emissions 

The world is on track to witness a global temperature rise of 2.4 °C by 2100 under a trajectory 
determined by prevailing policy settings as of October 2024. This is substantially higher than 
the Paris Agreement goal to pursue efforts to limit the global temperature rise to 1.5 °C 

 
5 WUE is the ratio of total direct water use to IT electricity consumption.  The 2024 United States Data Center 
Energy Usage Report estimates an average WUE value of 0.36 litres per kWh in the United States for 2023; 
several data centre operators have reported significantly higher values in the range of 1-1.5 litres per kWh for 
their global operations (Shehabi, et al., 2024; Equinix, 2023; Google, 2024). Disclosure of WUE in company 
reports is less common than for similar sustainability metrics relating to energy use or greenhouse gas 
emissions, increasing the uncertainty in current and projected water use by the industry as a whole.     
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above pre-industrial levels. The emergence of AI has both raised concerns that AI-fuelled 
data centre growth might fuel climate change and also raised expectations that AI 
applications in the energy sector could help reduce emissions by unlocking new 
optimisations and efficiencies. As over 100 countries – and the European Union – have 
targets to reach net zero emissions between 2030 and 2070, it is pertinent to explore what 
AI’s impact on emissions could potentially be.  

The net impact of AI on emissions is dependent on three broad factors: first, the rise in 
emissions from fossil fuel use associated with growth in AI training and use; second, 
emissions reductions brought about by efficiencies and innovations that AI brings to the 
energy system and the economy at large (discussed at length in Chapter 3); and third, 
increased emissions from the rebound effects of AI use through inducing new consumption, 
such as from cost reductions in oil and gas, or inducing a modal shift away from public 
transport to autonomous vehicles. 

An analysis of these three factors, however, is characterised by several uncertainties and 
unknowns. These include a lack of credible indicators that can help determine the uptake of 
existing AI applications, the unknown nature of AI applications that might arise even in the 
near future and uncertainty about how the rebound effects might play out. In addition, there 
is a lack of both consistency in methodologies and comprehensive data, the result of which 
is wide variances, even in historic estimates of emissions from the ICT sector (Bremer, et al., 
2023).  

For these reasons, this publication adopts an exploratory approach to estimating the impact 
of AI on emissions. This approach consists of the following parts:  

 We estimate and contextualise the current and future emissions from all data centres,
including all workloads, as AI is an unknown subset within it. 

 Next, we estimate the future emissions reductions arising from the efficiencies and
optimisations resulting from existing AI applications – if their adoption were to be scaled 
up to the sectoral level.  

 Finally, we explore the nature of rebound effects, although we do not estimate the
upper bounds of the effects due to their uncertain nature. 

Our analysis finds, first, that while data centres (all workloads, including AI) are among the 
largest sources of growth in emissions, the emissions peak and decline after 2030 and remain 
at nearly 1% of aggregate energy sector emissions between 2030 and 2035 in the Base Case. 
Second, while the potential emissions reductions through the widespread adoption of AI are 
significantly larger than the emissions from data centres, these potential emissions 
reductions remain at around 4% of total energy sector emissions in 2035. There is currently 
no existing momentum of AI adoption that would unlock these emissions reductions to this 
degree. Third, the magnitude of emissions increases from rebound effects (including higher 
fossil fuel consumption from the AI-enabled cost reductions) remains uncertain. These 
impacts therefore become a key determinant of where AI stands in balance on emissions.  
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5.8.1 Contextualising emissions growth from data centres  

Global fuel combustion CO2 emissions are estimated to reach 35 000 million tonnes (Mt) in 
2024. Data centres account for around 180 Mt of indirect CO2 emissions today from the 
consumption of electricity, not including any emissions from backup power generation. This 
includes all workloads by data centres, of which AI is a subset. Data centres therefore account 
for a small share of emissions: 0.5% of combustion emissions today (Figure 5.28). Indirect 
emissions from data centres grow by almost 80% over the course of the decade, rising to 1% 
in the Base Case. They grow 2.5 times to reach 1.4% of combustion emissions in the Lift-Off 
Case.  

Figure 5.28 ⊳ Indirect data centres CO2 emissions and CO2 emissions growth 
by sector (not considering AI impacts), 2024-2030 

 
IEA. CC BY 4.0. 

Data centres are on track to be responsible for 3% of electricity generation and 1% of total 
combustion emissions by 2030; they are among the few sectors that show growth to 2030 

Notes: Gt = gigatonne; Mt = million tonnes. Base = Base Case, Lift-Off = Lift-Off Case. For an explanation of the 
cases used in this report, please see Chapter 2, section 2.1.1. Future CO2 emissions are based on a scenario 
guided by today’s policy settings; the impacts of AI-led optimisations in the Widespread Adoption Case are 
not factored in. CO2 emissions growth includes emissions from fuel combustion and indirect emissions from 
electricity and heat consumption, but exclude process emissions.  

Owing to the variances in the electricity generation mix, there is an expected variance in 
emissions from data centres by region. In the United States, for example, data centre 
emissions grow by 70% over the next decade in the Base Case, reaching 3.3% of national 
combustion CO2 emissions. In the Lift-Off Case, US data centre emissions are 4.5% of 
combustion emissions by 2035. In China, emissions grow rapidly, reaching more than 3% of 
combustion emissions in the Lift-Off Case, while in the European Union, they remain under 
0.5% of combustion emissions, even in the Lift-Off Case. 
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While the share of data centres in aggregate emissions may appear small, data centres are 
among the few sectors – along with road transport and aviation – that see an increase in 
their direct and indirect emissions to 2030. In the Lift-Off Case (discussed in Chapter 2, 
section 2.3.2), data centres see the largest emissions growth among all sectors.  

However, there is a use case that could help data centres reduce emissions in the broader 
energy system in some regions, notably in parts of Europe and China. Data centres can also 
provide waste heat as an input to district heating, helping decarbonise the sector to some 
degree (Box 5.5).  

Box 5.5 ⊳ Data centre heat reuse to help decarbonise district heating 

Effectively all the electricity consumed by a data centre’s IT equipment is converted into 
heat. As the data centre market has grown to meet the increasing demand for 
computation, so has the opportunity to recover and reuse this heat. 

For the most part, the technology needed for data centres to recover their excess heat 
and transport it to offtakers is well established, and the adoption of new technologies – 
such as liquid cooling – provides an opportunity to increase the amount of heat 
recovered. Specific configurations vary depending on the cooling system employed, but 
all essentially involve using a heat exchanger to heat a working fluid, increasing the 
temperature using a heat pump if necessary and then piping it to an offtaker, such as a 
district heat network or nearby industrial facility. Air-cooled systems often require a heat 
pump to upgrade the heat to a usable temperature, but liquid cooling systems can 
provide higher-temperature heat – from 40 °C to 80 °C – which can directly supply 
existing district heating networks.  

Process engineering firms have demonstrated the ability to capture waste heat from data 
centres and supply district heating networks at EUR 190 000 to EUR 250 000 per MW of 
heat supplied, versus over EUR 730 000 per MW for an unabated natural gas combined 
heat and power plant. However, for data centre operators, the incentives for 
implementing heat recovery are not entirely financial. Often, they deploy these systems 
to improve PUE and secure a social licence to operate from the surrounding communities. 
There is growing interest among governments in increasing the use of heat recovery. In 
several countries – such as Germany and the Netherlands – it is now mandated that new 
data centres integrate heat recovery, and the European Union’s latest Energy Efficiency 
Directive requires data centres with a total energy consumption over 1 MW utilize waste 
heat recovery or show that such recovery is technically or economically unfeasible 
(Uptime Institute, 2023). 

While the technology to recover heat from data centres already exists, there are notable 
obstacles to overcome. These include the operational challenges of incorporating 
decentralised generation into legacy district heating networks, the need for clear 
business models that delineate responsibilities for installing and maintaining 
infrastructure, establishing firm offtake agreements with clear tariff structures, and 
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aligning data centre and district heating construction schedules. Nevertheless, several 
initiatives have proven the viability of coupling data centre heat recovery with district 
heating systems. Notably, Stockholm Data Parks – a joint venture led by the City of 
Stockholm, district heating utility Stockholm Exergi, power grid operator Ellevio and dark 
fibre provider Stokab – has connected over 20 data centres to the network, meeting 1.5% 
of system demand and reducing emissions by 50 grammes of CO2 per kWh of heat 
supplied (Covenant of Mayors, 2023). 

Figure 5.29 ⊳ Proximity of buildings space heating demand to data centres, 
and potential data centre heat supply in Europe, 2030 

 
IEA. CC BY 4.0. 

Reused heat from data centres can meet about 300 TWh of heating demand within a 
few kilometres by 2030, equivalent to 10% of European space heating needs 

Notes: TWh = terawatt hour. The data centre heat supply range is estimated based on possible heat 
recovery rates and the coefficient of performance of the heat pumps. 

Even in a strong heat coupling scenario, data centres would only be able to meet a 
fraction of residential heat demand. In Europe – a region with well-developed heat 
networks – space heating demand is over 9 times larger than the total waste heat of the 
world’s data centres. Nonetheless, IEA geospatial analysis of heat demand and data 
centre locations indicates that heat coupling could make a small but meaningful 
contribution to decarbonising buildings space heating in Europe. Around 10% of Europe’s 
buildings space heat demand is located within 5 kilometres of a data centre that is within 
a district heating system’s service area, which could offset nearly 5 Mt of CO2 if 
connected. While the largest data centres are unlikely to be sited near existing district 
heating networks and would require the installation of new, long-distance piping, 
opportunities exist to collocate other industrial offtakers nearby, especially in the case of 
new builds. 
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5.8.2 The role of AI in reducing emissions from energy use  

AI applications in the energy sector are being used for a wide range of optimisations, as 
explored in Chapter 3. Some of these applications lead to emissions reductions, whether 
directly through reduced energy needs or otherwise. They cut across fuel and mineral supply, 
power generation and energy end-use in buildings, transport and industry. Examples include:  

 Methane emissions reductions in oil and gas operations – a large source of this sector’s 
methane emissions come from leaks; AI can facilitate detection so that repairs can 
happen sooner, for example through better identification using satellite monitoring 
systems. 

 Power sector emissions reductions by improving efficiencies at fossil fuel-powered 
plants; for example, by ensuring process conditions within a natural gas-powered plant 
are closer to those for optimal efficiency. 

 Industry emissions reductions by optimising manufacturing processes for their energy 
needs, therefore lowering related emissions; for example, improving the fuel mix for 
cement production can improve energy efficiency by more than 2%. 

 Transport emissions reductions through more efficient vehicle operations and 
utilisation; for example, improved route choice or driving characteristics lead to 
efficiency gains of 5-10% and hence reduce emissions. 

 Buildings emissions reductions by optimising energy consumption in buildings 
equipped with management systems; for example, an optimised heating, ventilation 
and air conditioning control can save around 10% in energy consumption. 

Such examples highlight AI’s potential to lower emissions, although they are quite marginal 
in their aggregate impact today. AI’s impact on emissions depends on its uptake, driven by 
several factors: affordability and compelling use cases, a supportive regulatory environment, 
necessary digital infrastructure and the emergence of future AI capabilities, among others. 
The outlook for these factors, however, is highly uncertain.  

Therefore, we have conducted sectoral analyses that explore the extent of change in the 
outlook in the coming decade, considering only known AI applications informed by real-world 
case studies to guide our modelling. In this analysis, we consider the impact of the 
widespread adoption of AI on end-use sectors, taking into account the impacts that known 
AI applications could have if they were implemented or rolled out at the sectoral level. This 
is captured in the Widespread Adoption Case, introduced and discussed in Chapter 3, 
Box 3.1.  

This exploratory analysis reveals that existing AI applications in end-use sectors could lead to 
1.4 gigatonnes of CO2 emissions reductions in 2035 in the Widespread Adoption Case. This 
does not include any breakthrough discoveries that may emerge thanks to AI in the next 
decade. These potential emissions reductions, if realised, would be three times larger than 
the total data centre emissions in the Lift-Off Case, and nearly five times larger than those in 
the Base Case. For emissions reductions from AI to match the total emissions from data 
centres in the Base Case, these existing AI applications would need to be scaled up to around 
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a third of energy-intensive industries, a quarter of high-tech industries and 15% of other light 
industries. Rebound effects, however, are uncertain and can change the equation, as 
discussed in the next section. 

It is vital to note that there is currently no momentum that could ensure the widespread 
adoption of these AI applications. Therefore, their aggregate impact, even in 2035, could be 
marginal if the necessary enabling conditions are not created. Barriers include constraints on 
access to data, the absence of digital infrastructure and skills, regulatory and security 
restrictions, and social or cultural obstacles. Nonetheless, this analysis provides a flavour of 
the potential.  

Figure 5.30 ⊳ Direct and indirect emissions reductions in end-use sectors in the 
Widespread Adoption Case and emissions reductions 
contextualised with total emissions  

 
IEA. CC BY 4.0. 

Industry and transport have the largest potential for emissions reductions by 2035 under the 
Widespread Adoption Case; however, emissions reductions remain at around 4% of the total 

In the Widespread Adoption Case, one-third of the AI-enabled CO2 emissions reduction 
potential in the industrial sector comes from direct emissions – mainly in energy-intensive 
industries in which high digitalisation rates enable high deployment rates, and incremental 
savings in the range of 2-6% can be reached. The remaining two-thirds are indirect emissions 
savings through reduced electricity demand, mainly in light industry, where savings strongly 
depend on the digitalisation of plants. The assumed deployment varies between high 
deployment in high-technology subsectors such as transport equipment and machinery, 
which can reach savings in the double-digit percentage range, and other subsectors, such as 
wood products or mining, in which lower deployment and savings are assumed. 

In transport, road transport accounts for around two-thirds of the total emissions savings. 
About half of these savings result from the optimisation of road freight transport fleets, with 
deployment rates varying by country (50-70%). The other half comes from cars and buses, 
including autonomous driving. The impact of autonomous vehicles is constrained due to the 

-1 000

- 750

- 500

- 250

Industry Transport Buildings
Total

Reductions

CO2 Emission reductions in the 
Widespread Adoption Case, 2035 (Mt CO2)

 10

 20

 30

 40

Energy sector CO2 emissions, 2035 
(Gt CO2)



 

Chapter 5 | Emerging themes on energy and AI 251 

 

5 

limited possibility of retrofitting existing fleets, primarily involving new vehicles. AI-based 
operational optimisation of routes in aviation, shipping and rail contributes to the remaining 
one-third of emissions savings. Since these modes are already heavily digitalised and require 
relatively low retrofitting costs compared to fuel savings, higher deployment rates are 
assumed.  

In buildings, improvements in building management systems – mainly optimising the use of 
heating, ventilation and air conditioning but also other end-uses – lead to the most important 
savings from AI impacting electricity demand. As these savings strongly depend on the 
digitalisation of buildings, savings from services are higher given their higher deployment 
rates than the residential sector, where the installation of sensors and management systems 
is assumed to be much lower. In particular, the role of AI remains limited in emerging market 
and developing economies due to constraints on digitalisation over the coming decade, as 
significant buildings infrastructure continues to remain out of the realm of connectivity. 

5.8.3 The uncertain impacts of rebound effects from AI 

Applications of AI in various sectors of the economy seek to make outcomes more efficient, 
cheaper, less emissions-intense and optimised in other ways. However, such outcomes could 
trigger behavioural and structural changes that could lead to increased activity adoption, 
usage and workloads. In turn, this can negate the energy savings and emissions reductions 
from the AI applications achieved in the first place (Luccioni, Strubell and Crawford, 2025). 
Such outcomes – when efficiency gains lead to an increase in consumption, reducing but not 
completely negating the expected savings – are known as “rebound effects”. A more direct 
form of the rebound effect is known as the Jevons paradox. This is when increased 
consumption fully offsets, or even surpasses, the expected savings from improvements in 
efficiency.  

Such rebound effects could take several forms; for example, cheaper oil and gas could 
directly induce greater demand and, therefore, higher emissions; the rise of autonomous 
vehicle use could trigger modal shifts away from public transport use; cheaper inference of 
generative AI models could lead to significantly higher use in daily life; and the proliferation 
of robots could similarly drive energy demand higher.   

Take the case of the potential reduction in oil prices. Under prevailing conditions, a USD 10 
per barrel decrease in crude oil prices leads to a decline in oil product prices by 2-11%, 
depending on the region. The price elasticity of transport fuels, such as gasoline and diesel, 
ranges from -0.1 to -0.3, with lower elasticity in regions like the United States and higher 
elasticity in Europe (Centre for Transport Studies, 2015). Additionally, there is a distinction 
between gasoline and diesel: gasoline tends to be more elastic, as it is primarily used by 
consumers, whereas diesel has lower elasticity due to its role in freight transport 
(FridstrømLasse and Østli Vegard, 2021). Similarly, in the case of kerosene, consumers are 
more price sensitive when it comes to leisure travel but less reactive when traveling for work-
related purposes (Mumbower, Garrow and Higg, 2014). Our estimates show that a fall of 
USD 10 in a barrel of crude oil could result in increased fuel consumption, leading to a rise in 
global CO2 emissions equivalent to the emissions from 20 million cars. Note that this assumed 
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reduction in oil prices is illustrative, and not a result from our analysis on the widespread 
adoption of AI in oil extraction and supply.    

In the case of autonomous vehicles, through optimised fuel consumption from eco-driving 
algorithms, reduced idling and smarter routing, vehicle fuel consumption could be cut by 
over 20% compared to conventional cars. However, with falling costs and increased 
availability, autonomous vehicles might become the preferred mode of travel in some cities, 
even attracting people away from public transport (Fagnant and Kockelman, 2014). Studies 
estimate that the increased adoption of autonomous vehicles leads to the rise of the total 
distance travelled by cars, which in turn has implications for emissions – depending on, 
among other factors, the share of electric vehicles in the stock of cars and low-emissions 
sources in the electricity generation mix.   

These are two of a large set of direct and indirect rebound effects that could arise as a result 
of the proliferation of AI. The upper bound of the rise in emissions from such rebound effects 
therefore remains uncertain. In our analysis, we consider both low and high rebound effects, 
which have materially different outcomes on the net impact of AI on emissions. While the 
Widespread Adoption Case in end-use sectors is associated with emissions reductions that 
are far in excess of emissions from data centres, it is worth repeating that these emissions 
reductions are not on track to materialise without regulatory and other interventions. 
Furthermore, the presence of rebound effects might negate some of the emissions 
reductions from these AI interventions.  

The net impact of AI on emissions – and therefore climate change – would depend on how 
AI applications are rolled out, what incentives and business cases arise, and how regulatory 
frameworks respond to the evolving AI landscape. 

Figure 5.31 ⊳ Indirect emissions from data centres in selected cases and an 
exploratory analysis of AI impacts on emissions, 2035 

 
IEA. CC BY 4.0. 

While the widespread adoption of AI leads to emissions savings in excess of data centre 
emissions, such AI adoption is not guaranteed and could be negated by rebound effects 
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Annex A 

Methodology and data tables 

Methodology for data centre energy demand 
The modelling of data centre electricity demand relies on a bottom-up approach developed 
by the Lawrence Berkeley National Laboratory over the past two decades. In this modelling 
approach, IT equipment shipments are the key driver of data centre electricity demand. We 
analyse three types of IT equipment: servers, storage systems, and network equipment1. The 
last category refers to network equipment hosted within data centre facilities to connect 
servers and storage devices to the data network. It should not be confused with the data 
transmission network, which connects data centres and end-users (for example, 5G network 
towers). The latter falls outside the scope of the modelling of data centre electricity 
consumption in this study. 

The central input to the model is the annual shipment of servers. These come from: 

 IDC’s (International Data Corporation), which provides shipment projections for the
period 2019-2028 (IDC, 2024) 

 These are triangulated with additional data inputs from Omdia (OMDIA, 2025),
SemiAnalysis (SemiAnalysis, 2025), and Borderstep Institute (Hintemann, Hinterholtzer, 
and Konrat, 2024), and additional literature (Koomey, 2007), (Koomey, 2011), (Shehabi, 
et al., 2024), (Shehabi, 2018), (Shehabi, et al., 2016), (Gartner, 2014a, 2014b, 2014c, 
2015a, 2015b, 2015c, 2015d, 2016a, 2016b, 2017a, 2017b, 2017c, 2018a, 2018b, 2020), 
(Masanet, et al., 2020), (Malmodin, et al., 2024). 

The stock of storage drives is derived from hard-disk drive shipment data from Forbes 
(Forbes, 2021) and the split between HDDs and solid-state drives from (SSDs) (Shehabi, et 
al., 2024). The stock of network equipment is estimated based on server port density. 

We distinguish three types of data centres, which serve as archetypes in this model: 
enterprise data centres, colocation and service provider data centres, and hyperscale data 
centres. 

The technical characteristics of the server stock, such as lifetime and power consumption, as 
well as operational characteristics like idle power ratio and utilisation rates, are based on 
estimates from the United States (Shehabi, et al., 2024). Similarly, for storage drives, the split 
between storage technologies and average utilisation rates is also based on US estimates. 
The characteristics of storage drives are assumed to be constant across all data centre types. 
The network port distribution is also assumed to be constant, with one exception: specific 
InfinityBand-like network equipment, whose stock depends solely on accelerated servers. 

Based on these datasets and input assumptions, we estimate the installed capacity for each 
type of IT equipment. It is important to note that these values differ from the maximum 

1 See definitions in section 2.1. 
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designed capacity, as they consider only the installed units of each IT equipment type and do 
not reflect total rack capacity. 

The regional allocation of global installed IT capacities relies on several factors. The primary 
driver is the regional breakdown provided by our third-party data provider (IDC), which is 
based on market dynamics in each region. To achieve finer regional granularity, we also 
consider the level of digitalisation of economies based on the digital adoption index (World 
Bank, 2016) and the development of the local data centre market, using publicly available 
data on data centre market revenues (Statista, 2024), (Turner&Townsend, 2024). 

Network equipment is assumed to have a 100% utilisation rate. Storage systems utilisation 
rates are considered constant. Idle power assumptions are based on trends observed in the 
SERT database for conventional servers and estimates from the literature for accelerated 
servers (SPEC, 2024), (Shehabi, et al., 2024). 

Aggregation of utilisation rates is conducted by data centre type. The equation for the 
electricity consumption of servers is as follows: 

𝐸𝐸 = (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) ∗  𝑢𝑢 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Where: 

 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum power draw of an operating server (distinct from the maximum
rated power, especially for accelerated servers). 

 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the power drawn by a server when not processing useful tasks.

 𝑢𝑢 is the server utilisation rate.

For each region and data centre type, IT electricity demand is multiplied by the 
corresponding Power Usage Effectiveness (PUE) to obtain the total electricity demand of the 
infrastructure and hosted IT equipment. 

PUE primarily accounts for cooling equipment, power supply equipment, and lighting. Power 
supply equipment and lighting are collectively referred to as “auxiliary equipment”. Data 
centre type influences PUE due to variations in infrastructure efficiency, climate also affects 
PUE by directly impacting cooling requirements. PUE estimates are based on regional climate 
and data centre type (enterprise, colocation and service provider, and hyperscale) (Lei and 
Masanet, 2022). We assume that regional differences within the same data centre category 
arise from variations in cooling needs. The relative evolution of PUE over time is informed by 
improvements reported in company-level data (Google, 2025). 

The simplified equation for data centre electricity demand in each region is as follows: 

𝐸𝐸𝑖𝑖𝑚𝑚𝑑𝑑𝑚𝑚 𝑐𝑐𝑖𝑖𝑐𝑐𝑑𝑑𝑐𝑐𝑖𝑖 = � (𝐸𝐸𝑠𝑠𝑖𝑖𝑐𝑐𝑠𝑠𝑖𝑖𝑐𝑐,𝑖𝑖 + 𝐸𝐸𝑠𝑠𝑑𝑑𝑠𝑠𝑐𝑐𝑚𝑚𝑠𝑠𝑖𝑖,𝑖𝑖 + 𝐸𝐸𝑐𝑐𝑖𝑖𝑑𝑑𝑛𝑛𝑠𝑠𝑐𝑐𝑛𝑛,𝑖𝑖 ) ∗ 𝑃𝑃𝑃𝑃𝐸𝐸𝑖𝑖
𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑑𝑑𝑚𝑚 𝑐𝑐𝑖𝑖𝑐𝑐𝑑𝑑𝑐𝑐𝑖𝑖 𝑑𝑑𝑡𝑡𝑡𝑡𝑖𝑖
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Data tables 
General note to the tables 

This annex includes the following datasets: 

 Table A.1 - World Data centres by case: Includes global historical and projected data by
case and data centre type (hyperscale, colocation and service provider and enterprise) 
for the following metrics: 

 Total and IT installed capacity (GW)

 Power usage effectiveness

 Load factor (%)

 Total and IT electricity consumption (TWh)

 Table A.2 - Data centres installed capacity by region: Includes regional historical and
projected total and IT installed capacity (GW) for the Base Case 

 Table A.3: Data centres power usage effectiveness and load factor by region

 Table A.4: Data centres electricity consumption by region

Tables A.2 A.3 and A.4 include data for these regions: world, North America, United States, 
Central and South America, Europe, Africa, Middle East, Asia Pacific and China. The 
definitions for regions are in Annex B. 

Both in the text of this report and in these annex tables, rounding may lead to minor 
differences between totals and the sum of their individual components. 

Annex A licencing 

Subject to the IEA Notice for CC-licensed Content, this Annex A to this report is licensed under 
a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Licence. 
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Table A.1: World data centres by case 

*2035 numbers serve as exploratory scenarios given the high level of uncertainty around data centre demand 
growth. 

Base Lift-Off High Efficiency Headwinds

2020 2023 2024 2030 2035* 2030 2035* 2030 2035* 2030 2035*

Installed capacity (GW)

Total  60    83    97    226   277    305    404    185   221    158   160   

Hyperscale  20    31    36    85   103    108    139    89   103    62   64   

Colocation and service provider  19    27    35    86   116    118    172    93   115    59   66   

Enterprise  20    25    27    55   58    78    93    3   3    36   31   

IT  38    57    68    174   228    233    330    153   196    122   132   

Hyperscale  17    27    31    77   94    98    127    81   95    56   58   

Colocation and service provider  11    17    23    65   96    89    142    70   100    44   54   

Enterprise  10    13    14    32   38    46    61    2   2    21   20   

Power usage effectiveness

Total 1.53   1.43   1.41   1.29  1.21   1.30  1.22   1.21  1.13   1.28  1.20   

Hyperscale 1.19   1.15   1.14   1.10  1.09   1.10  1.09   1.10  1.09   1.10  1.09   

Colocation and service provider 1.67   1.56   1.53   1.33  1.21   1.33  1.21   1.32  1.15   1.33  1.21   

Enterprise 2.05   1.95   1.92   1.71  1.54   1.72  1.54   1.67  1.46   1.71  1.53   

Load factor (%)

Total  51    49    49    48   49    47    49    49   50    48   50   

Hyperscale  56    54    53    51   52    50    51    51   52    51   53   

Colocation and service provider  50    48    48    47   48    47    48    47   49    48   50   

Enterprise  48    46    45    45   46    44    46    45   47    45   48   

Electricity consumption (TWh)

Total  269    361    416    946  1 193   1 264  1 719    792   972    669   707   

Hyperscale  100    148    166    378   466    479   626    397   472    279   293   

Colocation and service provider  85    112    144    355   493    482   721    385   490    246   285   

Enterprise  85    100    106    213   234    303   372    10   10    144   128   

IT  176    252    295    733   985    972  1 409    657   864    522   587   

Hyperscale  84    129    146    342   427    434   574    360   432    253   269   

Colocation and service provider  51    72    94    266   406    361   594    291   425    185   235   
Enterprise  42    51    55    124   153    176   242    6   7    84   84   
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Table A.2: Data centres installed capacity by region 

Table A.3: Data centres power usage effectiveness and load factor by region 

Base Case

2020 2023 2024 2030

Total installed capacity (GW)
World  60     83     97     226    
North America  24     35     43     102    

United States  23     35     42     100    
Central and South America  0.3     0.4     0.4     0.8    
Europe  13     15     16     27    
Africa  0.3     0.3     0.4     0.7    
Middle East  0.3     0.3     0.4     0.7    
Asia Pacific  21     30     36     92    

China  14     20     24     67    

IT installed capacity (GW)
World  38     57     68     174    
North America  17     26     32     82    

United States  17     26     31     81    
Central and South America  0.2     0.2     0.2     0.5    
Europe  8     10     11     21    
Africa  0.1     0.2     0.2     0.5    
Middle East  0.1     0.2     0.2     0.4    
Asia Pacific  12     19     24     67    

China  8     13     16     49    

Base Case

2020 2023 2024 2030

Power usage effectiveness
World 1.53    1.43    1.41    1.29    
North America 1.39    1.32    1.32    1.24    

United States 1.39    1.31    1.32    1.23    
Central and South America 1.82    1.73    1.70    1.50    
Europe 1.57    1.47    1.45    1.29    
Africa 1.97    1.85    1.81    1.59    
Middle East 2.06    1.96    1.92    1.70    
Asia Pacific 1.68    1.55    1.50    1.35    

China 1.67    1.56    1.50    1.35    

Load factor (%)
World  51     49     49     48    
North America  53     51     50     48    

United States  53     51     50     49    
Central and South America  50     48     47     46    
Europe  51     49     48     48    
Africa  49     46     46     45    
Middle East  49     46     46     45    
Asia Pacific  50     48     48     47    

China  50     48     48     47    
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Table A.4: Data centres electricity consumption by region 

Base Case

2020 2023 2024 2030

Total electricity consumption (TWh)
World  269     361     416     946    
North America  112     158     187     434    

United States  108     154     183     426    
Central and South America  1.5     1.5     1.7     3.3    
Europe  57     66     68     113    
Africa  1.1     1.3     1.4     2.9    
Middle East  1.1     1.3     1.5     3.0    
Asia Pacific  93     128     150     378    

China  62     84     102     277    

IT electricity consumption (TWh)
World  176     252     295     733    
North America  80     120     142     351    

United States  78     117     139     345    
Central and South America  0.8     0.8     1.0     2.2    
Europe  36     45     47     88    
Africa  0.6     0.7     0.8     1.8    
Middle East  0.5     0.7     0.8     1.7    
Asia Pacific  55     82     100     281    

China  37     54     68     205    
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Annex B 

Definitions 
This annex provides general information on terminology used throughout this report 
including: units and general conversion factors; definitions of fuels, processes and sectors; 
regional and country groupings; and abbreviations and acronyms. 

Units 

Batteries Wh/kg watt hours per kilogramme 

Coal Mtce million tonnes of coal equivalent (equals 0.7 Mtoe) 

Distance km kilometre 

Emissions ppm parts per million (by volume) 
t CO2 tonnes of carbon dioxide 
Gt CO2-eq gigatonnes of carbon-dioxide equivalent (using 100-year 

global warming potentials for different greenhouse gases) 
kg CO2-eq kilogrammes of carbon-dioxide equivalent 
g CO2/kWh grammes of carbon dioxide per kilowatt-hour 
kg CO2/kWh kilogrammes of carbon dioxide per kilowatt-hour 

Energy EJ exajoule (1 joule x 1018) 
PJ petajoule (1 joule x 1015) 
TJ terajoule (1 joule x 1012) 
GJ gigajoule (1 joule x 109) 
MJ megajoule (1 joule x 106) 
kWh kilowatt-hour 
MWh megawatt-hour 
GWh gigawatt-hour 
TWh terawatt-hour 

Gas bcm billion cubic metres 
MBtu million British thermal units 

Mass kg kilogramme 
t tonne (1 tonne = 1 000 kg) 
kt kilotonne (1 tonne x 103) 
Mt million tonne (1 tonne x 106) 

Monetary USD million 1 US dollar x 106 
USD billion 1 US dollar x 109 
USD trillion 1 US dollar x 1012 
USD/t CO2 US dollars per tonne of carbon dioxide 

Power W watt (1 joule per second) 
kW kilowatt (1 watt x 103) 
MW megawatt (1 watt x 106) 
GW gigawatt (1 watt x 109) 
TW terawatt (1 watt x 1012) 
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Definitions 

Accelerated server: A specialised server equipped with hardware accelerators such as 
graphics processing units (GPUs) or tensor processing units (TPUs), to significantly boost 
computational performance for parallelisable and compute-intensive workloads. These 
servers are particularly critical for applications such as AI model training, inference, and high-
performance computing. 

Aviation: This transport mode includes both domestic and international flights and their use 
of aviation fuels. Domestic aviation covers flights that depart and land in the same country; 
flights for military purposes are included. International aviation includes flights that land in 
a country other than the departure location. 

Back-up generation capacity: Households and businesses connected to a main power grid 
may also have a source of back-up power generation capacity that, in the event of disruption, 
can provide electricity. Back-up generators are typically fuelled with diesel or gasoline. 
Capacity can be as little as a few hundred watts. Such capacity is distinct from mini-grid and 
off-grid systems that are not connected to a main power grid. 

Battery storage: Energy storage technology that uses reversible chemical reactions to 
absorb, store and release electricity on demand. 

Bioenergy: Energy content in solid, liquid and gaseous products derived from biomass 
feedstocks and biogas. It includes solid bioenergy, liquid biofuels and biogases. Excludes 
hydrogen produced from bioenergy, including via electricity from a biomass-fired plant, as 
well as synthetic fuels made with CO2 feedstock from a biomass source.  

Buildings: The buildings sector includes energy used in residential and services buildings. 
Services buildings include commercial and institutional buildings (e.g. schools, hospitals, 
public offices.) and other non-specified buildings. Building energy use includes space heating 
and cooling, water heating, lighting, appliances and cooking equipment.  

Carbon capture, utilisation and storage (CCUS): The process of capturing carbon dioxide 
emissions from fuel combustion, industrial processes or directly from the atmosphere. 
Captured CO2 emissions can be stored in underground geological formations, onshore or 
offshore, or used as an input or feedstock in manufacturing. 

Carbon dioxide (CO2): A gas consisting of one part carbon and two parts oxygen. It is an 
important greenhouse (heat-trapping) gas. 

Central processing unit (CPU): A central processing unit is the primary component of a 
computer that carries out instructions from programs by performing operations. 

Cloud computing: Cloud computing is the provision of computing services via the internet 
(“the cloud”). It enables users to access scalable and flexible services on demand, without 
the need to manage physical infrastructure directly. 

Coal: Consists of both primary coal, i.e. lignite, coking and steam coal, and derived fuels, e.g. 
patent fuel, brown-coal briquettes, coke-oven coke, gas coke, gas works gas, coke-oven gas, 
blast furnace gas and oxygen steel furnace gas. Peat is also included. 
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Colocation and service provider data centres: These facilities either lease space to 
customers to house their own computing and storage equipment (colocation) or provide 
both the space and computing equipment (service providers). 

Concentrating solar power (CSP): Thermal power generation technology that collects and 
concentrates sunlight to produce high temperature heat to generate electricity. 

Conventional server: A conventional server relies solely on central processing units (CPUs) 
for processing, without the use accelerator chips. It handles general computing tasks using 
standard memory, storage, and networking components. 

Critical minerals: A wide range of minerals and metals that are essential in clean energy 
technologies and other modern technologies and have supply chains that are vulnerable to 
disruption. Although the exact definition and criteria differ among countries, critical minerals 
for clean energy technologies typically include chromium, cobalt, copper, graphite, lithium, 
manganese, molybdenum, nickel, platinum group metals, zinc, rare earth elements and other 
commodities.  

Decomposition analysis:  A statistical method that decomposes an aggregate indicator to 
quantify the relative contribution of a set of pre-defined factors leading to a change in the 
aggregate indicator. The World Energy Outlook uses an additive index decomposition of the 
type Logarithmic Mean Divisia Index (LMDI). 

Demand-side integration (DSI): Consists of two types of measures: actions that influence 
load shape such as energy efficiency and electrification; and actions that manage load such 
as demand-side response measures. 

Demand-side response (DSR): Describes actions which can influence the load profile such as 
shifting the load curve in time without affecting total electricity demand, or load shedding 
such as interrupting demand for a short duration or adjusting the intensity of demand for a 
certain amount of time. 

Direct air capture (DAC): A type of CCUS technology that captures CO2 directly from the 
atmosphere using liquid solvents or solid sorbents. It is generally coupled with permanent 
storage of the CO2 in deep geological formations or its use in the production of fuels, 
chemicals, building materials or other products. When coupled with permanent geological 
CO2 storage, DAC is a carbon removal technology, and it is known as direct air capture and 
storage (DACS). 

Dispatchable generation: Electricity from technologies whose power output can be readily 
controlled up to the nameplate capacity, i.e. increased to maximum rated capacity or 
decreased to zero, in order to help match supply with demand.  

Electric vehicles (EVs): Electric vehicles comprise of battery electric vehicles (BEVs) and plug-
in hybrid electric vehicles (PHEVs).  

Electricity demand: Defined as total gross electricity generation less own use generation, 
plus net trade (imports less exports), less transmission and distribution losses. 
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Electricity generation: Defined as the total amount of electricity generated by power only or 
combined heat and power plants including generation required for own use. This is also 
referred to as gross generation. 

End-use sectors: Include industry, transport, buildings, agriculture and other non-energy use. 

Energy demand: See total energy supply. 

Energy-intensive industries: Includes production and manufacturing in the branches of iron 
and steel, chemicals, non-metallic minerals (including cement), non-ferrous metals (including 
aluminium), and paper, pulp and printing. 

Energy-related and industrial process CO2 emissions: Carbon dioxide emissions from fuel 
combustion, industrial processes, and fugitive and flaring CO2 from fossil fuel extraction. 
Unless otherwise stated, CO2 emissions in the World Energy Outlook refer to energy-related 
and industrial process CO2 emissions. 

Energy sector greenhouse gas (GHG) emissions: Energy-related and industrial process CO2 
emissions plus fugitive and vented methane (CH4) and nitrous dioxide (N2O) emissions from 
the energy and industry sectors. 

Energy services: A personal or societal gain from the use of energy. Include, inter alia, 
heating, cooling, lighting, entertainment, mobility, nourishment, hygiene and education. 
Also see useful energy. 

Enterprise data centres: These facilities are run by businesses or institutions for their own 
use. They are typically smaller and less efficient than other types of data centres. 

Fischer-Tropsch synthesis: Catalytic process to produce synthetic fuels, e.g. diesel, kerosene 
or naphtha, typically from mixtures of carbon monoxide and hydrogen (synthesis gas or 
syngas). The inputs to Fischer-Tropsch synthesis can be from biomass, coal, natural gas, or 
hydrogen and CO2.  

Floating-point operation (FLOP): A floating-point operation is an arithmetic calculation 
involving floating-point numbers, such as addition, subtraction, multiplication, or division. It 
is commonly used as a unit for measuring computational workload. Floating-point operations 
per second (FLOPS) is a common metric for evaluating the performance of accelerated 
servers. 

Fossil fuels: Consist of coal, oil and natural gas. Total fossil fuel use is equal to unabated fossil 
fuels plus fossil fuels with CCUS plus non-energy use of fossil fuels. 

Geothermal: Heat derived from the sub-surface of the earth, usually using a working fluid 
such as water and/or steam to bring the energy to the surface. Depending on its 
characteristics, geothermal energy can be used for heating and cooling purposes or be 
harnessed to generate clean electricity if the temperature is adequate. 

Graphics processing unit (GPU): Graphics processing units (GPUs) and other accelerators, 
such as tensor processing units (TPUs), are optimised for parallel computations, enabling 
faster processing of certain tasks. These types of processors are pivotal for AI model training, 
inference, and high-performance computing. 
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Heat (end-use): Can be obtained from the combustion of fossil or renewable fuels, direct 
geothermal or solar heat systems, exothermic chemical processes and electricity (through 
resistance heating or heat pumps which can extract it from ambient air and liquids). This 
category refers to the wide range of end-uses, including space and water heating, and 
cooking in buildings, desalination and process applications in industry. It does not include 
cooling applications. 

Heat (supply): Obtained from the combustion of fuels, nuclear reactors, large-scale 
heat pumps, geothermal or solar resources. It may be used for heating or cooling, or 
converted into mechanical energy for transport or electricity generation. Commercial heat 
sold is reported under total final consumption with the fuel inputs allocated under power 
generation. 

Heavy industries: Iron and steel, chemicals and cement. 

Hydrogen: Hydrogen is used in the energy system as an energy carrier, as an industrial raw 
material, or is combined with other inputs to produce hydrogen-based fuels. Unless 
otherwise stated, hydrogen in this report refers to low-emissions hydrogen. 

Hydrogen-based fuels: Include ammonia and synthetic hydrocarbons (gases and liquids) that 
derive their energy content from a pure (or nearly pure) hydrogen feedstock. If produced 
from low-emissions hydrogen, these fuels are low-emissions hydrogen-based fuels.  

Hydropower: Refers to the electricity produced in hydropower projects, with the assumption 
of 100% efficiency. It excludes output from pumped storage and marine (tide and wave) 
plants. 

Hyperscale data centres: These are massive facilities operated by major technology 
companies, such as Amazon Web Services, Google, Meta, and Microsoft. They use scalable, 
highly efficient infrastructure to support cloud services, web hosting and, increasingly, AI 
services. 

Idle power: Idle power refers to the amount of electricity a device consumes to perform 
essential background operations when it is not actively processing workloads. The idle power 
ratio is the same metric, expressed as a percentage of the device's maximum rated power. 
Lower levels of idle power indicate higher operational efficiency. 

Industry: The sector includes fuel used within the manufacturing and construction industries. 
Key industry branches include iron and steel, chemicals and petrochemicals, cement, 
aluminium, and paper, pulp and printing. Use by industries for the transformation of energy 
into another form or for the production of fuels is excluded and reported separately under 
other energy sector. There is an exception for fuel transformation in blast furnaces and coke 
ovens, which are reported within iron and steel. Consumption of fuels for the transport of 
goods is reported as part of the transport sector, while consumption of fuels by off-road 
vehicles is reported under the specific sector. For instance, fuels consumed by bulldozers as 
a part of industrial operations is reported in industry. 
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Inference: Inference is the process of deploying a trained model to analyse new or real-time 
data in order to generate outputs such as predictions, classifications, decisions, or responses. 
Unlike training, which involves learning from data, inference focuses on using learned 
patterns to perform tasks in production environments. 

Installed IT capacity: In a data centre, installed IT capacity refers to the total rated capacity 
of servers, storage, and networking devices and is measured in megawatts (MW). 

Investment: Investment is the capital expenditure in energy supply, infrastructure, end-use 
and efficiency. Fuel supply investment includes the production, transformation and transport 
of oil, gas, coal and low-emissions fuels. Power sector investment includes new construction 
and refurbishment of generation, electricity grids (transmission, distribution and public 
electric vehicle chargers), and battery storage. Energy efficiency investment includes 
efficiency improvements in buildings, industry and transport. Other end-use investment 
includes the purchase of equipment for the direct use of renewables, electric vehicles, 
electrification in buildings, industry and international marine transport, equipment for the 
use of low-emissions fuels, and CCUS in industry and direct air capture. Data and projections 
reflect spending over the lifetime of projects and are presented in real terms in year-2024 
US dollars converted at market exchange rates unless otherwise stated. Total investment 
reported for a year reflects the amount spent in that year. 

Latency: Network latency is a measure of the time that data takes to be communicated 
across the network. Networks with a longer delay or lag have high latency, while those with 
fast response times have low latency. 

Levelised cost of electricity (LCOE): An indicator of the expected average production cost for 
each unit of electricity generated by a technology over its economic lifetime. The LCOE 
combines into a single metric all the cost elements directly associated with a given power 
technology, including construction, financing, fuel, maintenance and costs associated with a 
carbon price. It does not include network integration or other indirect costs 

Light industries: Include non-energy-intensive industries: food and tobacco; machinery; 
mining and quarrying; transportation equipment; textiles; wood harvesting and processing 
and construction. 

Low-emissions electricity: Includes output from renewable energy technologies, nuclear 
power, fossil fuels fitted with CCUS, hydrogen and ammonia. 

Maximum designed capacity: In a data centre, this refers to the maximum theoretical 
capacity the facility can support when fully populated with IT equipment and operating at its 
design limits. This includes constraints such as power delivery, cooling infrastructure and rack 
space. In practice, the total installed capacity is often lower due to redundancy requirements, 
operational safety margins, or partial buildouts. 

Mini-grids: Small electric grid systems, not connected to main electricity networks, linking a 
number of households and/or other consumers. 
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Natural gas: A gaseous fossil fuel, consisting mostly of methane. Occurs in deposits, whether 
liquefied or gaseous. In IEA analysis and statistics, it includes both non-associated gas 
originating from fields producing hydrocarbons only in gaseous form, and associated gas 
produced in association with crude oil production, as well as methane recovered from coal 
mines (colliery gas). Natural gas liquids, manufactured gas (produced from municipal or 
industrial waste, or sewage) and quantities vented or flared are not included. Natural gas has 
a specific energy content of 44.09 MJ/kg on a higher heating value basis. Natural gas data in 
cubic metres are expressed on a gross calorific value basis and are measured at 15 °C and at 
760 mm Hg (Standard Conditions). Natural gas data expressed in tonnes of oil equivalent, 
mainly to allow comparison with other fuels, are on a net calorific basis. The difference 
between the net and the gross calorific value is the latent heat of vapourisation of the water 
vapour produced during combustion of the fuel. 

Non-energy-intensive industries: See other industry. 

Non-energy use: The use of energy products as raw materials for the manufacture of non-
energy products, e.g. natural gas used to produce fertiliser, as well as for direct uses that do 
not involve using the products as a source of energy, or as a transformation input 
e.g. lubrication, sealing, roading surfacing, preservation or use as a solvent.  

Nuclear power: Refers to the electricity produced by a nuclear reactor, assuming an average 
conversion efficiency of 33%.  

Offshore wind: Refers to electricity produced by wind turbines that are installed in open 
water, usually in the ocean. Includes fixed offshore wind (fixed to the seabed) and floating 
offshore wind.  

Oil: A liquid fuel. Usually refers to fossil fuel mineral oil. Includes oil from both conventional 
and unconventional oil production. Petroleum products include refinery gas, ethane, liquid 
petroleum gas, aviation gasoline, motor gasoline, jet fuel, kerosene, gas/diesel oil, heavy fuel 
oil, naphtha, white spirits, lubricants, bitumen, paraffin, waxes and petroleum coke.  

Other energy sector: Covers the use of energy by transformation industries and the energy 
losses in converting primary energy into a form that can be used in the final consuming 
sectors. It includes losses in low-emissions hydrogen and hydrogen-based fuels production, 
bioenergy processing, gas works, petroleum refineries, coal and gas transformation and 
liquefaction. It also includes energy own use in coal mines, in oil and gas extraction and in 
electricity and heat production. Transfers and statistical differences are also included in this 
category. Fuel transformation in blast furnaces and coke ovens are not accounted for in the 
other energy sector category. 

Other industry: A category of industry branches that includes construction, food processing, 
machinery, mining, textiles, transport equipment, wood processing and remaining industry. 
It is sometimes referred to as non-energy-intensive industry. 
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Passenger car: A road motor vehicle, other than a moped or a motorcycle, intended to 
transport passengers. It includes vans designed and used primarily to transport passengers. 
Excluded are light commercial vehicles, motor coaches, urban buses and mini-buses/mini-
coaches. 

Power generation: Refers to electricity generation and heat production from all sources of 
electricity, including electricity-only power plants, heat plants, and co-generation (i.e. 
combined heat and power) plants. Both main activity producer plants and small plants that 
produce fuel for their own use (auto-producers) are included. 

Power usage effectiveness (PUE): The power usage effectiveness is the ratio of total facility 
electricity consumption to the electricity consumption of the IT equipment (PUE = total 
consumption/IT consumption). It is commonly used as a key indicator of how efficiently a 
data centre uses energy. It focuses on the amount of energy used by computing equipment, 
rather than electricity consumption by other facility infrastructure (such as cooling and 
lighting). A low level of PUE indicates a high level of energy efficiency. 

Process emissions: CO2 emissions produced from industrial processes which chemically or 
physically transform materials. A notable example is cement production, in which CO2 is 
emitted when calcium carbonate is transformed into lime, which in turn is used to produce 
clinker. 

Rare earth elements (REEs): A group of seventeen chemical elements in the periodic table, 
specifically the fifteen lanthanides plus scandium and yttrium. REEs are key components in 
some clean energy technologies, including wind turbines, electric vehicle motors and 
electrolysers.  

Renewables: Include modern bioenergy, geothermal, hydropower, solar photovoltaics, 
concentrating solar power, wind, marine (tide and wave) energy, and renewable waste. 

Residential: Energy used by households including space heating and cooling, water heating, 
lighting, appliances, electronic devices and cooking. 

Road transport: This refers to all road vehicle types (passenger cars, two/three-wheelers, 
light commercial vehicles, buses and medium and heavy freight trucks). 

Services: A component of the buildings sector. It represents energy used in commercial 
facilities, e.g. offices, shops, hotels, restaurants and in institutional buildings, e.g. schools, 
hospitals, public offices. Energy use in services includes space heating and cooling, water 
heating, lighting, appliances, cooking and desalination. 

Solar: Includes solar photovoltaics (PV), concentrating solar power (CSP), and solar heating 
and cooling.  

Solar photovoltaics (PV): Electricity produced from solar photovoltaic cells including utility-
scale and small-scale installations. 
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Total energy supply (TES): Represents domestic demand only and is equivalent to electricity 
and heat generation plus the other energy sector, excluding electricity, heat and hydrogen, 
plus total final consumption, excluding electricity, heat and hydrogen. TES does not include 
ambient heat from heat pumps or electricity trade.  

Total final consumption (TFC): Is the sum of consumption by the various end-use sectors. 
TFC is broken down into energy demand in the following sectors: industry (including 
manufacturing, mining, chemicals production, blast furnaces and coke ovens); transport; 
buildings (including residential and services); and other (including agriculture and other non-
energy use). It excludes international marine and aviation bunkers, except at world level 
where it is included in the transport sector. 

Total installed capacity: In a data centre, total installed capacity refers to both IT capacity 
and the power capacity of auxiliary equipment. In practice, this is often lower than the 
maximum designed capacity due to redundancy requirements, operational safety margins, 
or partial buildouts. 

Transport: Includes fuels and electricity used in the transport of goods or people within the 
national territory irrespective of the economic sector within which the activity occurs. This 
includes: fuel and electricity delivered to vehicles using public roads or for use in rail vehicles; 
fuel delivered to vessels for domestic navigation; fuel delivered to aircraft for domestic 
aviation; and energy consumed in the delivery of fuels through pipelines. Energy 
consumption from marine and aviation bunkers is presented only at the world level and is 
excluded from the transport sector at a domestic level. 

Variable renewable energy (VRE): Sources of renewable energy (usually electricity) where 
the maximum output of an installation at a given time depends on the availability of 
fluctuating environmental inputs. VRE includes a broad array of technologies such as wind 
power, solar PV, run-of-river hydro, concentrating solar power (where no thermal storage is 
included) and marine (tidal and wave). 

Uninterruptible power supply (UPS): An uninterruptible power supply is equipment used to 
maintain power to a data centre during outages. UPS systems are crucial to ensuring the 
extremely high levels of reliability that data centres must meet. 

Utilisation rate: The utilisation rate of IT equipment measures the proportion of the available 
computing resources actively used over a given period. 
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Regional and country groupings 

Advanced economies: OECD regional grouping and Bulgaria, Croatia, Cyprus1,2, Malta and 
Romania. 

Africa: North Africa and sub-Saharan Africa regional groupings. 

Asia Pacific: Southeast Asia regional grouping and Australia, Bangladesh, Democratic 
People’s Republic of Korea (North Korea), India, Japan, Korea, Mongolia, Nepal, New Zealand, 
Pakistan, The People’s Republic of China (China), Sri Lanka, Chinese Taipei, and other Asia 
Pacific countries and territories.3 

Caspian: Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and 
Uzbekistan. 

Central and South America: Argentina, Plurinational State of Bolivia (Bolivia), Bolivarian 
Republic of Venezuela (Venezuela), Brazil, Chile, Colombia, Costa Rica, Cuba, Curaçao, 
Dominican Republic, Ecuador, El Salvador, Guatemala, Guyana, Haiti, Honduras, Jamaica, 
Nicaragua, Panama, Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay and other 
Central and South American countries and territories.4 

China: Includes (the People's Republic of) China and Hong Kong, China. 

Developing Asia: Asia Pacific regional grouping excluding Australia, Japan, Korea and 
New Zealand. 

Emerging market and developing economies: All other countries not included in the 
advanced economies regional grouping. 

Eurasia: Caspian regional grouping and the Russian Federation (Russia). 

Figure C.1 ⊳ Main country groupings 

Note: This map is without prejudice to the status of or sovereignty over any territory, to the delimitation of 
international frontiers and boundaries and to the name of any territory, city or area. 
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Europe: European Union regional grouping and Albania, Belarus, Bosnia and Herzegovina, 
Gibraltar, Iceland, Israel5, Kosovo, Montenegro, North Macedonia, Norway, Republic of 
Moldova, Serbia, Switzerland, Türkiye, Ukraine and United Kingdom. 

European Union: Austria, Belgium, Bulgaria, Croatia, Cyprus1,2, Czech Republic, Denmark, 
Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, 
Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovak Republic, Slovenia, 
Spain and Sweden. 

IEA (International Energy Agency): Australia, Austria, Belgium, Canada, Czech Republic, 
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Korea, 
Lithuania, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, 
Slovak Republic, Spain, Sweden, Switzerland, Türkiye, United Kingdom and United States.  

Latin America and the Caribbean (LAC): Central and South America regional grouping and 
Mexico.  

Middle East: Bahrain, Islamic Republic of Iran (Iran), Iraq, Jordan, Kuwait, Lebanon, Oman, 
Qatar, Saudi Arabia, Syrian Arab Republic (Syria), United Arab Emirates and Yemen. 

Non-OECD: All other countries not included in the OECD regional grouping. 

Non-OPEC: All other countries not included in the OPEC regional grouping. 

North Africa: Algeria, Egypt, Libya, Morocco and Tunisia.  

North America: Canada, Mexico and United States. 

OECD (Organisation for Economic Co-operation and Development): Australia, Austria, 
Belgium, Canada, Chile, Colombia, Costa Rica, Czech Republic, Denmark, Estonia, Finland, 
France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Latvia, 
Lithuania, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, 
Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Türkiye, United Kingdom and United 
States.  

OPEC (Organization of the Petroleum Exporting Countries): Algeria, Bolivarian Republic of 
Venezuela (Venezuela), Equatorial Guinea, Gabon, Iraq, Islamic Republic of Iran (Iran), 
Kuwait, Libya, Nigeria, Republic of the Congo (Congo), Saudi Arabia and United Arab 
Emirates. 

OPEC+: OPEC grouping plus Azerbaijan, Bahrain, Brunei Darussalam, Kazakhstan, Malaysia, 
Mexico, Oman, Russian Federation (Russia), South Sudan and Sudan. 

Southeast Asia: Brunei Darussalam, Cambodia, Indonesia, Lao People’s Democratic Republic 
(Lao PDR), Malaysia, Myanmar, Philippines, Singapore, Thailand and Viet Nam. These 
countries are all members of the Association of Southeast Asian Nations (ASEAN). 

Sub-Saharan Africa: Angola, Benin, Botswana, Cameroon, Côte d’Ivoire, Democratic Republic 
of the Congo, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Ghana, Kenya, Kingdom of 
Eswatini, Madagascar, Mauritius, Mozambique, Namibia, Niger, Nigeria, Republic of the 
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Congo (Congo), Rwanda, Senegal, South Africa, South Sudan, Sudan, United Republic of 
Tanzania (Tanzania), Togo, Uganda, Zambia, Zimbabwe and other African countries and 
territories.6 

Country notes 
1 Note by Republic of Türkiye: The information in this document with reference to “Cyprus” relates to the 
southern part of the island. There is no single authority representing both Turkish and Greek Cypriot people 
on the island. Türkiye recognises the Turkish Republic of Northern Cyprus (TRNC). Until a lasting and equitable 
solution is found within the context of the United Nations, Türkiye shall preserve its position concerning the 
“Cyprus issue”. 
2 Note by all the European Union Member States of the OECD and the European Union: The Republic of Cyprus 
is recognised by all members of the United Nations with the exception of Türkiye. The information in this 
document relates to the area under the effective control of the Government of the Republic of Cyprus. 
3 Individual data are not available and are estimated in aggregate for: Afghanistan, Bhutan, Cook Islands, Fiji, 
French Polynesia, Kiribati, Macau (China), Maldives, New Caledonia, Palau, Papua New Guinea, Samoa, 
Solomon Islands, Timor-Leste, Tonga and Vanuatu.  
4 Individual data are not available and are estimated in aggregate for: Anguilla, Antigua and Barbuda, Aruba, 
Bahamas, Barbados, Belize, Bermuda, Bonaire, Sint Eustatius and Saba, British Virgin Islands, Cayman Islands, 
Dominica, Falkland Islands (Malvinas), Grenada, Montserrat, Saint Kitts and Nevis, Saint Lucia, Saint Pierre and 
Miquelon, Saint Vincent and Grenadines, Saint Maarten (Dutch part), Turks and Caicos Islands. 
5 The statistical data for Israel are supplied by and under the responsibility of the relevant Israeli authorities. 
The use of such data by the OECD and/or the IEA is without prejudice to the status of the Golan Heights, East 
Jerusalem and Israeli settlements in the West Bank under the terms of international law. 
6 Individual data are not available and are estimated in aggregate for: Burkina Faso, Burundi, Cabo Verde, 
Central African Republic, Chad, Comoros, Djibouti, Gambia, Guinea, Guinea-Bissau, Lesotho, Liberia, Malawi, 
Mali, Mauritania, Sao Tome and Principe, Seychelles, Sierra Leone and Somalia. 

Abbreviations and acronyms 

AI artificial intelligence 
ASIC application-specific integrated circuit 
AV autonomous vehicle 
BEMS building energy management systems 
CAPEX capital expenditure 
CCSC carbonating calcium silica cement 
CCUS carbon capture, utilisation and storage 
CPU central processing unit 
DAC direct air capture 
DFT density functional theory 
DLR dynamic line rating 
EMDE emerging market and developing economies 
EV electric vehicle 
FDD fault detection and diagnosis 
FLOP floating-point operation 
FLOPS floating-point operations per second 
FT Fischer-Tropsch 
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GDP gross domestic product 
GOES grain-oriented electrical steel 
GPQA Graduate-Level Google-Proof Q&A 
GPU graphics processing unit 
HEFA hydroprocessed esters and fatty acids 
HTE high-throughput experimentation 
ICT information and communications technology 
IoT internet of things 
IP Internet Protocol 
IRP integrated resource plan 
IT information technology 
LDAR leak detection and repair 
LFP lithium iron phosphate 
Li-ion lithium-ion 
LM language model 
LLM large language model 
MBtu million British thermal units 
MER market exchange rates 
MoE mixture of experts 
MOF metal organic framework 
NITRD Networking and Information Technology Research and Development 
NPU neural processing unit 
NSFC National Natural Science Foundation of China 
NWP numerical weather prediction 
O&M operations and maintenance 
OECD Organisation for Economic Co-operation and Development 
OPC ordinary Portland cement 
OPEX operational expenditure 
PDB Protein Data Bank 
PPP purchasing power parity 
PUE power usage effectiveness 
PV photovoltaic 
R&D research and development 
RD&D research, development and demonstration 
SCM supplementary cementitious material 
SLM small language model 
SMR small modular reactor 
TPU tensor processing unit 
TRL Technology Readiness Level 
TSO transmission system operator 
UPS uninterruptible power supply 
VC venture capital 
XR extended reality 
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Energy and AI
World Energy Outlook Special Report

The development and uptake of artificial intelligence (AI) 
has accelerated in recent years – elevating the question of 
what widespread deployment of the technology will mean 
for the energy sector. There is no AI without energy – 
specifically electricity for data centres. At the same time,  
AI could transform how the energy industry operates if  
it is adopted at scale. However, until now, policy makers  
and other stakeholders have often lacked the tools  
to analyse both sides of this issue due to a lack of 
comprehensive data. 
 
This report from the International Energy Agency (IEA) aims 
to fill this gap based on new global and regional modelling 
and datasets, as well as extensive consultation with 
governments and regulators, the tech sector, the energy 
industry and international experts. It includes projections 
for how much electricity AI could consume over the next 
decade, as well as which energy sources are set to help 
meet it. It also analyses what the uptake of AI could mean 
for energy security, emissions, innovation and affordability.
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