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AI and Energy Demand

1 Introduction

The rapid rise of generative AI in recent years often evokes images of a world becoming in-

creasingly digital and virtual. However, the economics of AI remain firmly grounded in the

physical reality of commodities, especially energy. The rapid development and adoption of

large language models (LLMs), like ChatGPT, Claude, DeepSeek, and Grok, in the US, China,

Europe and across the globe require the construction of an increasing number of data centers

that consume vast amounts of electricity. LLM costs have two main components: a large, fixed

cost for training the model on large quantities of data, and variable costs for operating and

responding to user prompts (Korinek and Vipra 2024). As substantial computational resources

are required during both stages, electricity consumption represents a critical input for compa-

nies delivering AI services. In Northern Virginia, which features the largest concentration of

data centers in the world, the square footage of server-filled warehouses is now roughly equiv-

alent to the floor space of 8 Empire State buildings (Cushman and Wakefield 2024, Farrell and

Newman 2023).

Using descriptive statistics and a multi-country computable general equilibrium (CGE)

model, IMF-ENV (Chateau et al. 2025), this paper seeks to understand how the projected

growth of data centers fueled by AI will drive electricity consumption, by answering the

following questions: (1) how fast have sectors involved in the development and delivery of AI-

related services grown in recent years, and what has happened to the electricity consumption

of leading U.S. firms in the AI production ecosystem? (2) what is the impact on energy prices

and the mix of electricity sources under alternative policy scenarios? (3) what will be the

impact of data centers growth on carbon emissions?

To identify AI-related economic activity in national accounts, we begin by examining

where the AI production ecosystem appears in official statistics. We classify the AI produc-

tion ecosystem into four firm categories: pure data center operators, AI research labs, cloud

services providers, and vertically integrated companies. These firms’ activities primarily align

with two North American Industry Classification System (NAICS) sectors: "Data Processing,

Internet Publishing, and Other Information Services" (518/519) and "Computer Systems De-

sign and Related Services" (5415). We analyze U.S. national accounts data for these sectors to

identify patterns in output growth, productivity, and growth sources (capital, intermediates

2



AI and Energy Demand

including energy, and TFP). Additionally, we collect firm-level data from sustainability and

annual reports to track electricity cost shares across different AI ecosystem participants.

Our analysis of national accounts and firm-level data reveals three key findings. First,

AI-producing sectors in the U.S. economy have grown at nearly triple the rate of the overall

private non-farm business sector. Second, this exceptional growth derives from increased total

factor productivity, higher capital investment, and greater use of complementary resources,

including energy. Third, firm-level evidence demonstrates that electricity costs as a share of

total expenses for vertically integrated AI companies doubled between 2019 and 2023, rising

from 0.8% to 1.6% on average, reflecting the rapid expansion of energy-intensive data center

operations. Notably, pure data center companies maintain a substantially higher electricity

cost share of 13-15%, suggesting considerable room for further increases in electricity intensity

among vertically integrated AI companies as they expand their data centers.

To assess the future implications of rising AI-driven electricity demand, we employ the

IMF-ENV model (Chateau et al. 2025), a multi-region, multi-sector computable general equi-

librium framework. We incorporate projected data center power consumption from 2024 to

2030 across three key regions—the United States, Europe, and China—using forecasts from

McKinsey and JP Morgan. These projections anticipate annual power demand growth rates

of 22%, 13%, and 10% for these regions, respectively. We model AI impact by increasing IT

sectors’ TFP to match the anticipated growth in data center power demand. Our analysis

explores three scenarios: a baseline scenario without AI-related TFP growth; an AI scenario

under current energy policies; and an AI scenario with alternative energy policies aligning

renewable electricity generation with regional long-term strategies. Additionally, we simulate

variations accounting for potential medium-term constraints that might limit AI sector growth:

one scenario caps renewable energy expansion between 2025-2030 to historical five-year aver-

age growth rates, addressing concerns about supply chain limitations, permitting delays, and

policy uncertainty; the other restricts new investment in transmission and distribution infras-

tructure relative to baseline projections, reflecting potential challenges in grid modernization

and expansion.

Our IMF-ENV model simulations reveal that the projected AI boom will cause man-

ageable increases in energy prices and emissions compared to baseline projections, with im-

pacts varying based on energy policies and infrastructure constraints. In the best-case sce-
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nario—with renewable energy subsidies and no infrastructure limitations—electricity prices

would rise by only 0.9%. However, with constrained renewable scale-up and limited trans-

mission infrastructure investment, prices could increase by 8.6%. Regarding emissions, we

project that U.S. carbon emissions would increase by 5.5% while global emissions would rise

by 1.2% on average under current policies without infrastructure constraints. The cumula-

tive additional emissions between 2025-2030 would roughly equal Italy’s entire energy-related

greenhouse gas emissions over five years. Implementing policies aligned with Nationally

Determined Contributions would reduce these increases by 24%. While the social cost of

these additional emissions represents a small fraction of AI’s expected economic benefits, they

would nonetheless contribute to an already concerning accumulation of greenhouse gases.

This paper makes several contributions to the literature on AI and energy by integrat-

ing components previously studied in isolation. First, we offer a consistent quantitative eval-

uation of the macroeconomic impacts arising from the growing expansion of data centers

within a computable general equilibrium framework, providing insights into the wider eco-

nomic consequences of this structural change, particularly energy inputs. Second, we evaluate

medium-term factors influencing this transition and their effects on key policy outcomes, in-

cluding electricity prices, value-added changes, and international commodity prices. Finally,

we examine the relationship between AI-related data center expansion and energy policies, in-

vestigating how these policies can support this phase of the digital transition while mitigating

greenhouse gas emissions.

Public discourse and research in economics on generative artificial intelligence (gen-

AI) has primarily focused on concerns like job displacement, safety risks, and its potential

to reshape income and wealth disparities, as well as promises of boosting productivity and

reinvigorating growth (Comunale and Manera 2024, Cazzaniga et al. 2024, among many oth-

ers). In contrast to this literature, which largely abstracts from the physical dependencies of

AI, we explicitly study the impact of projected increases in electricity demand from AI on

energy prices and carbon emissions, focusing on AI production rather than adoption or task

automation. Additionally, our comparative growth decomposition exercise for the U.S. econ-

omy offers novel empirical insights about the production of AI services that are absent from

the existing literature.

A growing body of literature examines rising energy demand from data centers. De
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Vries (2023) estimates AI-related power consumption could reach 127 TWh by 2027 through

bottom-up analysis of GPU shipments and power-per-chip data. Pilz et al. (2025) project global

AI data center power demand could reach 327 GW by 2030, pointing out U.S. infrastructure

bottlenecks that could shift AI development abroad. Roucy-Rochegonde and Buffard (2025)

conclude global data center electricity consumption could reach 1100-2000 TWh by 2030, while

Aljbour et al. (2024) forecast U.S. data center demand could hit 252–400 TWh by 2030. Chen

(2025) highlights uncertainties in forecasting due to lack of corporate transparency. While

these studies focus primarily on establishing power demand forecasts through extrapolation

and expert insights, our work instead takes these forecasts as given and studies their implica-

tions for electricity prices and carbon emissions across multiple regions, including the United

States, Europe, and China.

Research on AI’s impact on electricity prices remains limited. Using elasticity estimates

from the literature, Burian and Stalla-Bourdillon (2025) estimate that rising electricity demand

from AI-driven data centers could increase gas prices by around 9% in Asia and Europe and

7% in the United States by 2026. Chandramowli et al. (2024) projects U.S. electricity de-

mand could increase by 9% by 2028, potentially raising utility electricity costs by 19%. Unlike

these studies, we employ a CGE model calibrated to projections of data center power demand

through 2030. Our approach is also informed by observed trends in AI sectors. Specifically,

it reflects how future ICT growth stems from both TFP improvements and increased capital

investment, while capturing the rising electricity intensity within the ICT sector—patterns that

mirror recent developments in AI sectors and companies.

Environmental impacts of AI have received increasing attention. Monserrate (2022) de-

tails cloud computing’s ecological impacts in terms of water usage, electricity consumption,

carbon emissions, noise pollution, and electronic waste. WEF (2025) estimates the electricity

consumption breakdown across AI life cycle stages (development, training, deployment) and

argues for energy scarcity as a key design principle for future AI infrastructure. In contrast,

IEA (2025) highlights AI’s growing data center energy demand alongside its promise for en-

ergy optimization and emissions reduction. Our work advances this literature by quantifying

the specific carbon emission impacts of AI-driven data center expansion under various policy

scenarios and infrastructure constraints using a CGE model.

Finally, a segment of the endogenous growth literature examines the potential role of
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AI in driving economic development. Aghion et al. (2019) model AI as a novel automation

technology that tackles tasks previously considered uniquely human, such as aspects of inno-

vation itself. Their work suggests AI-driven growth may ultimately be constrained by essen-

tial tasks resistant to improvement—similar to Baumol’s cost disease—potentially including

energy and resource constraints. Epoch AI (2025) extend this thinking with a compute-centric

endogenous growth model where AI progress, driven by computational power scaling, cre-

ates a feedback loop: enhanced AI capabilities boost output, which is partially reinvested into

compute development, potentially generating annual growth rates up to 30%. While these

theoretical approaches offer valuable insights into AI growth mechanisms, our multi-country

multi-sector CGE model provides a more empirically grounded analysis by calibrating to his-

torical data and IMF projections to assess the economic and environmental implications of AI

expansion over the medium-term.

The remainder of the paper is structured as follows. Section 2 examines where AI pro-

duction appears in the national accounts and analyzes these sectors growth patterns, their

sources of growth, and their electricity usage. Section 3 introduces the IMF-ENV model and

describes our scenario design, including assumptions about data center growth, alternative

energy policies, and variations in medium-term constraints on renewable scale-up and trans-

mission and distribution infrastructure. Section 4 presents our simulation results, analyzing

the impacts on electricity prices, carbon emissions, and energy mix under different policy and

infrastructure constraint scenarios. Section 5 concludes with a summary of key insights.

2 Growth, Productivity, and Electricity Use in AI-related sec-

tors of the U.S. Economy

2.1 Sector Classification

AI production occurs primarily within NAICS sectors 518/519 (data processing, internet pub-

lishing, and other information services) and 5415 (computer systems design and related ser-

vices), though it is not exclusive to these sectors. The AI production ecosystem comprises

four distinct firm types: (i) specialized AI research labs (e.g., OpenAI, Anthropic); (ii) pure

data center operators (e.g., Equinix); (iii) cloud services and infrastructure providers; and (iv)
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vertically integrated technology companies (e.g., Microsoft, Google) that span the entire value

chain—from research through deployment to integration of AI with existing products like

Google Search, Gmail, and Microsoft Office. These firms’ core activities predominantly align

with the aforementioned NAICS codes, making these sectors central to measuring AI-related

economic activity.

To be precise, data centers are most often categorized as NAICS 518210 (Data Pro-

cessing, Hosting, and Related Services) as they include, according to the US Census Bureau,

activities such as application hosting, cloud storage services, computer data storage services,

or computing platform infrastructure provision. For example, Equinix, one of the largest data

center companies, is categorized under this industry code. Regarding the large and vertically

integrated AI platform and service companies, as examples, META’s NAICS code is 519290,

while Alphabet operates under 519, 518 and 541511. Microsoft also has 518 and 541511 as one

of its NAICS codes and IBM’s codes are 5415 (54151 and 541512).

A few caveats are in order. First, our definition represents a narrower scope than

broader classifications like the Information and Communications Technology (ICT) sector,

which spans both manufacturing (computers, electronics) and services (telecommunications,

software, IT services). It should be noted that the scenario simulations in IMF-ENV model

are built around a TFP shock to the ICT sector, as the latter constitutes the smallest plausible

proxy for the AI sector that can be lifted from the GTAPv11 database. The classification of AI

here under NAICS codes 518/519 and 5415 also differs from, but overlaps with, the commonly

used ’tech’ category, which typically refers to several innovative technologies’ companies with

a very large market capitalization, ranging from hardware manufacturers (for example, Ap-

ple) to digital platform and service providers (Microsoft, Google, Meta, Alibaba) to essential

component makers like semiconductor firms (Nvidia, TSMC, ASML). Hardware manufactur-

ers and semiconductor firms are excluded here. Second, certain activities of AI companies

are classified under traditional sectors, e.g., Equinix as a data center company also is a lessor

of real estate (NAICS 531110), but such codes are excluded to avoid capturing non-AI activi-

ties. Third, AI production is becoming increasingly embedded across activities due to hybrid

business models (e.g., Tesla investing in autonomous vehicles), among other reasons, mak-

ing it difficult to make a clean one-to-one correspondence between AI-producing sectors and

NAICS.
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2.2 Data

Data on nominal and real value added (in SAAR 2017 USD for the latter) and real value

added per employee (in SAAR 2017 USD per employee) were sourced from Haver Analytics,

while data on the contributions of TFP and inputs (capital, labor, intermediates) to gross

output growth were taken from the BEA-BLS Integrated Industry-level Production Accounts

(KLEMS).

Limited transparency exists regarding electricity intensity in the AI production ecosys-

tem due to minimal corporate disclosure (Chen 2025). To estimate electricity costs as a share

of total expenditures, we gathered annual electricity consumption data from sustainability

reports of publicly traded companies across three firm categories: AI platform and service

providers, specialized data center operators, and semiconductor manufacturers. We calcu-

lated electricity costs by multiplying consumption figures by electricity prices from the US En-

ergy Information Administration (EIA), using an average of industrial and commercial rates.

This approach reflects that large tech companies likely benefit from lower industrial rates,

while smaller data center operators typically face higher commercial rates as classified by the

EIA. We obtained each company’s total costs, that is, costs of revenues (or sales) plus oper-

ating expenses, from the annual 10-K reports they submitted to the Securities and Exchange

Commission (SEC). We then calculated electricity’s share of total costs by dividing electricity

expenditures by the total costs. Finally, to calculate the average electricity share by company

category, we take a weighted average based on companies’ revenues also from their 10-K an-

nual reports. It is worth highlighting, first, that two data center companies go private in the

middle of the sample period and hence do not file 10-Ks or sustainability reports, and second,

that for a very small number of companies electricity consumption is missing in their sustain-

ability reports for part of our sample. To deal with missing data, we interpolate using the

average annual growth rates for revenues and electricity consumption shares for each of the

three company categories.

Finally, using 10-Q SEC filings, sourced from Capital IQ, we also compile data on capital

expenditures by Microsoft, Alphabet, META, and Amazon between 2019 and 2024.
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2.3 The Growing Macroeconomic Relevance of AI-producing Sectors

In the US, AI-producing sectors have experienced rapid growth, with their value-added in-

creasing threefold from $372 billion (in constant 2017 USD) to $1.13 trillion between 2013 and

2023, thereby significantly outpacing both overall private industries and manufacturing. Con-

sequently, these sectors’ contribution to total nominal US GDP increased from 2.4 percent in

2013 to 3.5 percent in 2023, with the data processing sector nearly doubling its share during

this period. In contrast, manufacturing’s share of GDP declined by 1.5 percentage points over

the same timeframe (Figure 1).

Figure 1: Share of AI-related Value-Added Output in GDP (percent of nominal GDP)

Sources: Haver Analytics. Note: NAICS=North American Industry Classification System.

From 2013 to 2023, AI-producing sectors increased their share of real US GDP from 2.1%

to 5%, far outpacing their nominal GDP growth. This gap arises from opposing price trends:

while the economy’s overall price level, measured by the GDP deflator, climbed nearly 31%

over the decade, prices in AI-related sectors like data processing and computer system design

dropped by 17% and 27%, respectively. These declines reveal that, in real terms (adjusted for

inflation), these sectors contribute more to the economy than their nominal figures suggest.

Rapid productivity growth likely drives this, increasing supply faster than demand can keep

up, pushing prices down as seen in agriculture, manufacturing, computer hardware, and solar

photovoltaics—hinting that parts of AI production may already be commodifying.

Real gross output growth in the AI-producing sectors has outpaced the growth in pri-

vate non-farm and manufacturing sectors (Figure 2). Moreover, the AI-producing sectors have

demonstrated remarkable resilience during the global financial crisis of 07-09 and the 2020

pandemic-induced recession, maintaining positive and substantial growth rates while other

industries stagnated or contracted. Growth in 2021-2022 has been particularly strong, with
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AI-related services output expanding by 14.6%, far exceeding the overall private non-farm

business sector growth of 5.1%. Similarly, the information sector, that contains data process-

ing, recorded a growth rate of 7.7% growth in 2023 - the second highest across all industries

after mining. Overall, the sectors involved in AI production have exhibited robust growth in

value-added and gross output, increasing their importance in overall US output in the last

decade.1

Figure 2: cost share in TFP, Combined Inputs, and Real Gross Output (percent)

Sources: Haver Analytics. Note: NAICS = North American Industry Classification System; TFP = Total factor
productivity. Priv. Nonfarm= Private Nonfarm Business Sector.

Such rapid growth of AI-producing sectors has been driven by exceptional gains in

labor productivity (LP). Specifically, value-added per employee in the information and AI-

producing sectors grew nearly eight and thirteen times faster than overall economy-wide LP

over the past decade, respectively. Within the information sector, the data processing sector

demonstrated even larger LP gains. In contrast, manufacturing sector has experienced declines

in average LP since 2007 (Figure 3). This differential growth has led to sectoral LP levels that

far exceed the economy-wide average. The average LP in the data processing sector was $728

thousand (in constant and seasonally adjusted 2017 USD) in the first two quarters of 2024,

approximately five times the national average, while for computer systems design it equaled

$259 thousand, roughly twice as high as the overall average (Figure 4). The model in section 3

1The Bureau of Economic Analysis reached similar conclusions for a somewhat broader group of sectors
it identifies as the "Digital Economy", which it studied under the Digital Economy Satellite Account (DASE)
(Highfill and Surfield 2022). In addition to data processing and computer system design services, the DASE
includes e-commerce, the digital components of manufacturing, and a smaller federal digital services sector.
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Figure 3: Average Growth in Real Value
Added per Employee (percent)

Figure 4: Real Value Added per Employee
(SAAR thousand 2017 USD)

Sources: Haver Analytics. Note: NAICS=North American Industry Classification System.

builds upon the premise that rapid labor productivity gains in the information sector will

likely continue.

The productivity growth in AI-producing sectors was largely the result of elevated in-

vestment in physical capital and the complementarity of intermediate inputs—contrary to

computer systems design where labor and total factor productivity (TFP) contributed signifi-

cantly to output growth (Figure 5). Hence, the remarkably high output-per-employee of data

centers, relative to other sectors, is the result of fast capital accumulation which has required

increased energy consumption as an intermediate input. Partly due to the increased capital-

intensity of the data processing sector, the information sector showed net job losses in the first

quarter of 2024 (Figure 6). The increased capital intensity is also apparent in the substantial

capital expenditures made by major AI platforms and service providers (Figure 7). In the

fourth quarter of 2024, Alphabet, Amazon, Meta, and Microsoft collectively spent nearly 75

billion USD on capital investments — a fivefold increase from the 15 billion USD recorded in

the first quarter of 2019.

2.4 AI’s demand for electricity

The analysis of major publicly traded companies in semiconductors, hardware, and software

reveals significant variation in electricity costs as a share of total costs between 2019 and 2023

(Figure 8). Electricity costs make up 13–15 percent of total costs for data center companies,

while they account for only 0.8–1.5 percent for semiconductor firms and AI service compa-

nies. However, this electricity intensity is rising rapidly among companies developing and
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Figure 5: Contributions to Sectoral Gross
Output Growth in AI-Producing Sectors
(percent)

Figure 6: Job Gains and Losses
in the U.S. Information Sector
(millions)

Sources: Haver Analytics. Note: NAICS = North American Industry Classification System. BEA-BLS Integrated
Industry-level Production Accounts (KLEMS). TFP = Total Factor Productivity. Priv. Nonfarm = Private Nonfarm
Business Sector.

deploying AI models. On average, AI platforms and service companies have almost doubled

their electricity cost share in less than five years (Figure 8). As these hyperscale companies in-

creasingly integrate vertically by building, operating, and leasing their own data centers, their

electricity cost shares will likely continue to grow. These observed and expected future empir-

ical trends on electricity shares for AI platforms and service companies inform the calibration

of the model presented in section 3.

The broader implications for global electricity consumption are substantial. Worldwide

electricity consumption from data centers and AI is estimated to have reached 400-500 TWh

in 2023, more than double the level in 2015, which had stayed mostly flat during 2015-2019

(OPEC 2024). For the U.S., where growth is the fastest, electricity demand from data centers

is expected to increase from 178 TWh in 2024 to 606 TWh in 2030 under a medium-demand

scenario (McKinsey 2024a). By 2030, AI-driven global electricity consumption could hit 1,500

TWh, conceivably making it comparable to India’s current total electricity consumption, the

third highest in the world. This projected electricity demand from AI by 2030 is around

1.5 times higher than expected demand from electric vehicles, another emerging source of

electricity demand growth (Figure 9). While data centers currently account for about 1.5

percent of global electricity consumption, this share varies significantly by location. In the

United States, data centers represent approximately 4 percent of total electricity use, with
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Figure 7: Capital Expenditures by Selected
AI Platform and Service Companies
(billion USD)

Figure 8: Estimated Electricity Costs for
Publicly Traded Companies
(percent of total costs)

Sources: Figure 7: S and P Capital IQ. Figure 8: Companies’ sustainability reports; and 10-K filings.

some regions showing particularly high concentration – notably Virginia, where data centers

accounted for 26 percent of electricity consumption in 2024 (Electric Power Research Institute

(EPRI) 2024; Shehabi et al. 2024).

Recent developments in the AI industry have created more uncertainty around its fu-

ture compute and energy demands. On the supply side, companies like DeepSeek are achiev-

ing breakthroughs in algorithmic efficiency that, combined with declining costs of ongoing

hardware improvements, may lower the compute costs of AI models faster than previously

anticipated. However, these efficiency gains may be counterbalanced by higher use of com-

pute by companies pursuing better-performing models (Hoffmann et al. 2022). Adding to

this complexity is the recent emergence of reasoning models – which require more compute

in their deployment – and possibly greater AI use driven by lower costs and availability of

open-source models.

3 AI and Energy Demand: An Application with IMF-ENV

3.1 Data center electricity demand forecasts

To assess the implications of rising electricity demand in AI-producing sectors, this exercise

utilizes projected power consumption from data centers in three key regions—the United

States, Europe, and China—between 2024 and 2030 (Figure 16). Aggregate level projections for
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Figure 9: Electricity Demand for Data Centers Compared to Top Electricity Consuming Coun-
tries in 2023 (thousands of TWh)

Sources: EIA; and OPEC. Note: Estimates for data centers (DCs) and electric vehicles (EVs) are for the world and
come from OPEC and IEA, respectively. Data labels in the figure use International Organization for Standardiza-
tion (ISO) country codes.

these regions are derived from forecasts by McKinsey (2024a), McKinsey (2024b), and JP Mor-

gan (2024). The projected annual growth rates in power demand are estimated at 22%, 13%,

and 10% for the United States, Europe, and China, respectively. Specifically, the U.S. projection

is based on McKinsey’s “medium demand” scenario, while China’s forecast is sourced from

a JP Morgan study. For European countries, a GDP-weighted methodology was applied to

the three largest economies—Germany, France, and Italy—which collectively account for ap-

proximately half of the region’s total economic output. Additionally, the 2023 baseline power

demand for China was assumed to be equivalent to that of the United States.

The forecasted US electricity consumption in 2030 used in the model’s simulations is

broadly in line with the US Department of Energy’s (DOE) projected average consumption of

675 TWh when DOE’s 2024-2028 growth rates are extended to 2030 (Shehabi et al. 2024). For

China, the projected electricity consumption coming from data centers in 2030 stands on the

lower end of the IEA’s forecasted range of 260-470 TWh (IEA 2024). Finally, for the European

Union and the UK, our projected 141 TWh of electricity consumption in 2030 is somewhat

below the 205 TWh forecasted for the European Union in IEA (2024), when the 2022-2026

implied annual growth rate of 8% is extrapolated to 2030. Our projected annual growth rate

of 13% is above theirs (at 8% between 2022 and 2026), but their starting point at 110 TWh in
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2022 is above ours (60 TWh in 2023). However, McKinsey’s data showed a consumption of 60

TWh for the EU and UK in 2023.

3.2 IMF-ENV: model basics

IMF-ENV is a multi-country dynamic Computable General Equilibrium (CGE) model devel-

oped at the IMF to analyze the intricate interactions among economic agents—households,

firms, governments, and the external sector—across multiple sectors and markets. Its strength

lies in capturing both direct and indirect effects of policy changes and economic shocks, mak-

ing it a powerful tool for assessing general equilibrium outcomes at domestic and global

levels. Another strength of the model is its inherent consistency: markets for all commodi-

ties and production factors must clear in each simulation period; all resource constraints

are respected; and all macroeconomic balances (government budget, current account, and

investment-savings equality) are maintained. This consistency is ensured through so-called

“closure rules”—exogenous assumptions governing market clearing mechanisms—which also

link these balances to external projections from the World Economic Outlook. As such, IMF-

ENV provides a robust framework for medium- and long-term policy analysis. It is particu-

larly well-suited for evaluating structural shifts in the economy that could arise from energy

policies, climate policies and trade reforms.

Built on neoclassical optimization principles and competitive market assumptions, in

this analysis IMF-ENV simulates the global real economy with a recursive dynamic struc-

ture extending to 2030. Agents’ responses regarding consumption, production, and trade are

driven by different elasticities. There are four factors of production: labor, capital, land, and

natural resources, with capital distinguished by a vintage structure (i.e., old versus new). Us-

ing the GTAPv11 Power database (Aguiar et al. 2022; Chepeliev 2023), the model is calibrated

for 25 regions, including the G20 countries, and 36 sectors. Energy is a key focus of the model,

divided into electric (e.g., solar, wind, nuclear, hydropower, coal, oil, gas and rest) and non-

electric (e.g., coal, oil, gas extraction) sectors, with GHG emissions tied to direct fossil fuel

consumption for any economic activity. Model regions are connected to one another through

bilateral trade flows that are modeled with the Armington specification (Armington 1969),

where demand for goods is differentiated by region of origin. This trade specification takes

into account bilateral trade flows while considering differences in prices, transportation, and
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Figure 10: CES production function of the
AI sector

Figure 11: CES production function of the
Power sector

Sources: IMF-ENV model. Further details on the model are available in Chateau et al. 2025. In the right panel,
electricity generation technologies marked in green denote technologies that do not emit GHGs.

trade costs by commodity by trading partners.The trade structure allows IMF-ENV to model

complex interdependencies within economies, and assess how structural shifts in one region

can transmit to rest of the world through bilateral trade networks.

In IMF-ENV, separate production functions are defined for each economic sector or

activity. Sector-specific representative firms minimize their production costs under the as-

sumption of constant returns to scale, implying that each sector operates in perfectly compet-

itive markets. The production function in each sector consists of nested constant-elasticity-of-

substitution (CES) functions, which capture various substitution possibilities between different

pairs of input bundles. The nested CES system represents the optimization process where each

representative firm minimizes the cost of purchasing intermediate inputs and production fac-

tors within the constraints of the production function. Figure 10 shows the CES nesting of

non-agricultural activities, including the AI sector.

In IMF-ENV, the standard configuration dictates that each economic activity produces a

single commodity, with the exception being the electricity generation sector. A notable charac-

teristic of IMF-ENV is its differentiation among eight distinct electricity generation technolo-

gies: coal, gas, oil, nuclear, hydro, solar PV, wind, and others (including geothermal, biofuels,

tidal, and waste technologies). Consequently, electricity generation activities follow a many-

to-one mapping, where all power generation activities are used to produce a single electricity

commodity as shown in Figure 11. Importantly, the intermediate inputs from the transmission

and distribution (T&D) sector are necessary for scaling up power generation from any source.
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Therefore, any expansion of power generation must be accompanied by corresponding growth

in the T&D sector. 2 Further details on the different structural and behavioral assumptions of

the model are available in (Chateau et al. 2025).

3.2.1 Static and dynamic calibration

The first step in the calibration process entails calibrating the model to the 2017 base year

data from the GTAPv11 database. To this end, values for key parameters, such as elastici-

ties of trade, consumption (income), and production, are sourced from the literature and the

GTAPv11 database. Next, the CES factor share parameters of all the production functions are

then calculated so that the model replicates the 2017 base-year data. To simulate the base-

line scenario, several parameters must be calculated during the dynamic calibration process

with the goal of projecting several exogenous drivers. Here we describe the key steps. First,

demographic trends and labor force participation rates are taken from the WEO database to

project labor supply. Second, the labor productivity path for each country is then calibrated in

an iterative process to match real GDP growth rates from the IMF’s WEO projections. Third,

the share of each type of electricity technology is controlled by dynamic calibration of the

CES share parameters using projections from (Keramidas et al. 2025). Fourth, CO2 emissions

are calibrated by an emissions shifter also based on (Keramidas et al. 2025). Finally, various

closure rules maintain macroeconomic balances: (i)-(ii) the government budget balance and

the current account balance (CAB), both as a share of GDP, are assumed to follow the WEO

projections; (iii) investments are driven by the sum of consumer savings (as a share of GDP),

government savings (which follow exogenous projections), and foreign savings (linked to the

CAB closure rule). This calibration procedure enables the model to replicate historical data

while projecting plausible future paths under varying conditions.

3.3 Scenarios

In this paper we simulated three scenarios with IMF-ENV. The baseline scenario does not ac-

count for AI growth trends, and therefore the energy and emissions trends are calibrated

2This assumption implies that all new generation must be connected to the grid. Consequently, the model
does not include off-grid capacity additions, which continue to be a minor share of total generation in all countries
where AI-related shocks are simulated.
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solely based on policies that were implemented until the year 2024. Based on data from the

GTAPv11 database, the global average input cost shares for labor and capital in the Informa-

tion Technology sector are approximately 30 percent. About a quarter of intermediate inputs

are from other compute services, and roughly 5 percent are from manufacturing. Energy,

which mainly consist of electricity, is our key input of interest and constituted about 1 percent

of the input costs in 2017. These cost shares are shown in Figure 12 and are broadly similar

in the U.S., China and Europe. Recent data shows that in less than five years, AI platforms

and service companies have increased their electricity cost share from 0.8 percent in 2019 to

1.5 percent in 2023 (Figure 8). In our simulations, we assume that the increasing trend in IT

sector’s electricity intensity will persist in the United States, which is expected to experience

the most significant AI expansion. Under this assumption by 2030, this intensity rises to 4

percent, up from 1 percent in 2017 in the U.S. For all the other countries these shares are kept

identical to the 2017 values.

Figure 12: Cost shares of inputs in the AI sector (percent, 2017)

Sources: IMF-ENV based on Aguiar et al. 2022

In addition to the baseline, we model two AI growth scenarios. In both AI scenarios,

we introduce an AI-driven total factor productivity (TFP) shock within the IT sector. This

shock is calibrated to ensure that the sectoral electricity demand from the IT sector aligns
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with the forecasts presented in Table 1. The TFP shock is applied to the Value Added (VA)

bundle within the nested-CES production function (see Figure 10) and is specifically directed

at production processes that incorporate new capital. The AI impact remains unchanged in

both scenarios of AI development; however, the variation is due to electricity sector policies,

which influence the composition of electricity supply. The first AI scenario, AI under current

energy policies, presents an AI shock under current energy policies that are consistent with the

baseline, assuming no changes in the electricity generation mix. Differently, in the second

AI scenario, AI under alternative energy policies, additional supply-side measures are used to

increase renewables’ share through feed-in tariffs aligned with regional long-term strategies

following NDC-LTS (Keramidas et al. 2025). Understandably, the advancement of AI technol-

ogy is heavily reliant on the growth of electricity supply. Therefore, energy policies should

prioritize stimulating the supply side. Among the supply-side policies, we implement feed-in

tariffs for renewable energy in the second AI scenario because this incentive has been his-

torically adopted by all our target countries within their policy frameworks, and renewable

technologies represent some of the most cost-effective options available.3

Several factors could potentially slow the growth of solar and wind capacity in the U.S.

over the next five years, including supply policy uncertainty, chain constraints, delays in per-

mitting processes, and fluctuations in commodity prices. Additionally, these factors could also

impact new investments in updating and expanding the grid, which may contribute to limited

expansion of renewable energy. For both AI scenarios, simulations are also done with different

assumptions concerning medium-term constraints that could limit the growth of AI sectors.

The sensitivity of the model results is checked against the following assumptions - (1) Growth

potential of renewables between 2025-2030 (Current/Alternative policies with smaller renewables

scale-up), and (2) Investments in transmission and distribution infrastructure (Current/Alterna-

tive policies with no additional investments in T&D).

In the IMF-ENV model, the first assumption is addressed by introducing a constraint

that caps the increase in sectoral production levels of solar PV and wind power generation

such that the annual growth rates are equal to or below the average growth rates seen in the

last five years. In IMF-ENV, all power generation expansion needs to be supported by com-

3Alternate policy instruments like feebates and regulations can also be used and calibrated to deliver similar
results in the power sector, however, with different macroeconomic, price and emission impacts (Chateau et al.
2024).
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plementary expansion of transmission and distribution (T&D) sector. The second constraint

is modeled by adding a new constraint that fixes the sectoral investment pathway of the T&D

sector to that in the baseline pathway. It is important to note that investments in T&D sec-

tors are increasing in the baseline scenario and therefore, this additional constraint highlights

a situation where the sector’s expansion does not sufficiently keep up with the increase in

new power generation capacity that is added in the economy. In all scenarios presented in

the paper, power generation from hydropower and nuclear technologies is capped at baseline

generation levels as expansion of these technologies largely depends on political decisions and

geographical capacity rather than market mechanisms.

4 Results

The TFP shock in the AI sector improves sectoral productivity, resulting in higher output

from this sector. This leads to increased demand for all inputs, including electricity, and the

AI shock increases electricity consumption by the IT sector in the U.S., Europe, and China.

The increased demand for electricity can be addressed through two primary methods: (1) in-

creasing the overall electricity production within the economy, and (2) reallocating electricity

resources from other economic activities to the AI sector. In the former channel, power pro-

ducers expand total generation, which would come from both carbon-intensive sources like

natural gas and coal, and zero-carbon sources like solar, wind and other renewables. However,

the composition of electricity generation by technologies varies across countries and is based

on their relative production costs and current policies. The latter channel is influenced by the

extent to which electricity expansion can be achieved and the relative productivity differences

across various sectors within a region.

By 2030, in the AI scenario under current energy policies, total electricity supply increases

by 8 (525 TWh), 3 (145 TWh) and 2 (237 TWh) percent in the U.S., Europe, and China, re-

spectively, relative to the baseline scenario. In the AI scenario under alternative energy policies,

the increase in total electricity supply is kept the same, but its composition shifts in favor of

renewables. In the U.S., Europe, and China, generation from solar and wind sources offsets

about 58, 35 and 166 TWh of generation from other sources, including largely natural gas in

the U.S and coal power in China (Figure 13).
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Figure 13: Electricity Supply and Generation
Mix, 2030 (TWh)

Figure 14: Change in Electricity Prices Rela-
tive to the Baseline Scenario, 2030 (percent)

Sources: Figure 4: IMF-ENV model. Note: The left axis shows the change in generation mix under alternative
energy policies relative to current policies in terawatt hours (TWh). Feed-in tariffs increase generation from solar
and wind sources. The right axis shows the total increase in electricity supply relative to the baseline scenario
in TWh, which is identical in both current energy policies and alternative energy policies. Figure 5: IMF-ENV
model.

In both scenarios, due to rising marginal costs of electricity supply, the increase in gen-

eration is less than proportional to economy-wide demand growth, driving electricity prices

up. In this case, the surge would be 0.9, 0.45 and 0.35 percent in the U.S., Europe, and China

respectively, under current energy policies (Figure 14). The electricity price increase is less

significant under alternative policies because of the feed-in tariff on solar and wind. This tar-

iff lowers the generation cost of these technologies, which to begin with have relatively low

production costs and a higher share in total electricity generation compared to current policies.

The impact on electricity prices is particularly sensitive to medium-term limitations that

may impede the expansion of power generation capacity. Furthermore, price pressures may

also originate from other factors such as the increased electrification of economic activities

and the adoption of electric vehicles, which are not modeled in this paper. Material pressure

on the prices would be added should the expansion of renewable energy sources decelerate

compared to recent historical trends, and additional investments in transmission and distri-

bution infrastructure be absent, relative to the baseline. With the realization of these two

constraints, the AI expansion could alone lead to a price increase in the U.S., Europe, and

China under current policies, potentially escalating to 8.6, 3.6, and 5.3 percent, respectively, by

2030 (Figure 14).

Among these two constraints, modeling results indicate that the capacity of the grid
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infrastructure is a more critical factor contributing to price increases.4 Without further in-

vestments in transmission and distribution, supporting the expansion of the AI sector would

require redirecting electricity from other economic activities. This shift would pose significant

challenges especially for energy-intensive manufacturing sectors. For example, in the U.S. the

annual growth in these sectors’ value added would experience an average reduction of 0.3

percent point compared to the baseline scenario, negatively impacting annual GDP growth by

0.1 percent point.

In both AI scenarios, global and regional GHG emissions increase due to the increased

energy demand resulting from the expanded IT sector and its spillovers to the economy. Under

current energy policies, the 2030 increase is 5.5, 3.7 and 1.2 percent in the US, Europe and

China, respectively, with a global average increase of 1.2 percent (Figure 15). In cumulative

terms, this translates into a global GHG emissions increase of 1.7 Gt between 2025 and 2030,

which is similar to Italy’s energy-related GHG emissions over a 5-year period. Notably, under

alternative energy policies, even a modest decarbonization of the power sector limits the total

cumulative global GHG emission increase from the AI shock significantly to 1.3 Gt by 2030, 24

percent less global emissions than the under current energy policies.5

Lastly, the TFP shock on the AI sector has a positive impact on GDP levels. Under

current energy policies, the AI shock raises the average annual growth rate of global GDP by

0.5 percentage point between 2025 and 2030. Given our choice of calibrating the AI shock, the

GDP gains are more significant in countries where the projected growth rate of the IT sector

and the sectors’ relative importance in the economy are higher. Under alternative energy

policies, these benefits are slightly diminished due to the implementation of the feed-in tariff

policy. The fiscal impact of these tariffs ranges from 0.3 to 0.6 percent of GDP across various

countries. In the simulations, it is assumed that this cost is financed through increased lump-

sum taxes, resulting in a slight reduction in household consumption. The growth in GDP level

from AI expansion greatly exceed the fiscal costs, resulting in similar gains in annual GDP

4Given the strong commitment of major AI players, many medium-term power supply rigidities could be
overcome, leading to a small increase in electricity prices. Public investments are being made in the United
States for upgrading transmission and distribution infrastructure to meet rising electricity demand. Innovative
solutions like power coupling, see Engel et al. (2025), and small modular nuclear reactors could offer flexibility,
making constraints less restrictive than expected. Most new nuclear capacity is expected online no earlier than
the early 2030s.

5This estimate is conservative compared with that of Stern and Romani (2025) who project that AI’s energy
demand could contribute between 0.4 and 1.6 Gt of carbon dioxide equivalent annually by 2035.
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Figure 15: Emission Impacts of Expansion in IT Sector (Cumulative greenhouse gas emissions,
MtCO2e; percent change, relative to baseline)

Sources: IMF-ENV model. Note: The left axis shows the total greenhouse gas emissions increase in metric tons
of carbon dioxide equivalent (MtCO2e) between 2025 and 2030 resulting from information technology (IT) sector
expansion in selected regions. The right axis shows the total increase in global emissions in 2030 relative to the
baseline emissions as a result of this expansion.

growth both AI scenarios we modelled.

In sum, while the AI-induced expansion of the IT sector is expected to raise global

GDP, the development also comes at a cost in terms of higher carbon emissions. Drawing on

a median social cost of carbon (SCC) estimate of $39 per ton—based on 147 published studies

with over 1,800 estimates (see Moore et al. (2024))—the additional social cost of 1.3 to 1.7

Gt of carbon-equivalent emissions is about $50.7 to $66.3 billion, or 1.3 to 1.7 percent of the

AI-driven increase in real world GDP between 2025-2030.

5 Conclusions

As AI technologies continue to evolve and proliferate, the demand for computational power

and electricity is poised for a significant surge. AI-related electricity consumption could reach

up to 1,500 TWh by 2030, possibly outpacing other emerging sources of demand, like electric

vehicles, and becoming comparable to India’s total electricity consumption, which is the third

largest in the world.

The increasing electricity demand from the IT sector will stimulate overall supply,

which—if sufficiently responsive—will lead to a small increase in electricity prices. More

sluggish supply responses, especially in expanding medium-term renewables capacity and

transmission and distribution infrastructure, will lead to much stronger price surges, impact-
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ing households and businesses, and possibly constraining the growth of the AI industry itself.

In the U.S., the country expected to experience the largest surge in AI-driven demand for elec-

tricity, the AI expansion alone could increase electricity prices by up to 9 percent, adding to

price pressures coming from many other sources.

In addition, under current energy policies, the AI-driven rise in electricity demand

could add 1.7 Gt in global greenhouse gas emissions between 2025 and 2030, similar to Italy’s

energy-related GHG emissions over a 5-year period. The social cost of these additional emis-

sions represents only a very small portion of the anticipated aggregate economic benefits from

AI. However, they would nonetheless contribute to an already concerning accumulation of

emissions. In addition, while the additional emissions will have global impacts, the benefits of

AI will likely be unequal both across countries and among different groups within societies,

potentially exacerbating existing inequalities (Cazzaniga et al. 2024, Cerutti et al. 2025).

Demand for compute and electricity from AI service producers is subject to wide uncer-

tainty. The emergence of more efficient, open-source AI models, such as DeepSeek, has added

to the uncertainty, as algorithmic improvements tend to reduce compute costs and electricity

demand. At the same time, lower compute costs stimulate AI use, which—together with the

development of more energy-intensive reasoning models—adds upward electricity demand

pressure. This heightened uncertainty poses a risk of delaying crucial energy investments,

potentially resulting in underinvestment and escalating energy prices.

Implementing policies that incentivize renewables can enhance electricity supply, help

mitigate price surges and reduce the emission impacts. Ultimately, such measures will enable

the realization of AI’s full potential in a sustainable manner.
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Appendix A: Tables and figures

Figure 16: Projected Power Demand From AI and Data Centers
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