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Executive summary

The global fisheries and aquaculture sector, which produced over 185 million tonnes of 
aquatic products in 2022 and was valued at USD 195 billion, is becoming increasingly 
vulnerable to food fraud. This vulnerability arises from the sector’s complexity, the 
wide variety of species traded (over 12 000), and the involvement of multiple inspection 
authorities across international supply chains. Food fraud in the aquatic sector includes 
practices such as species substitution, mislabelling, adulteration, counterfeiting and 
misrepresentation of origin or production method. These actions, often driven by 
economic motives, pose significant risks to public health, consumer trust and marine 
conservation.

This report provides a detailed overview of food fraud in the aquatic sector, outlining 
its types, causes and impacts. It demonstrates that species substitution and mislabelling 
are the most common forms of fraud, with studies indicating that up to 20 percent of 
fishery and aquaculture products globally are mislabelled. Fraud is especially prevalent 
in restaurants and catering services, where visual identification is challenging, and in 
processed products, where the species identity can be masked. Health risks linked to 
fraud include exposure to toxins, allergens, pathogens and contaminants, especially 
when mislabelled products come from unauthorized sources or bypass safety checks.

A series of international case studies illustrates the extent and consequences of food 
fraud in the aquatic sector and provides an overview of the most common cases and the 
available tools to fight food fraud in the sector. 

Regulatory frameworks and standards play a vital role in fighting fraud in 
the aquatic sector. The report reviews international standards, including Codex 
Alimentarius, FAO guidelines, and GFSI‑benchmarked schemes (such as BRCGS, 
FSSC 22000, International Featured Standards, and Safe Quality Food), as well as 
national laws in Australia, Canada, the United States of America and the European 
Union. It advocates for harmonized labelling requirements, the mandatory inclusion 
of scientific names, and better traceability systems. Raising consumer awareness and 
increasing industry transparency are also highlighted as critical steps to reduce fraud 
and support sustainable practices in the aquatic sector.

The report underscores the importance of DNA‑based methods such as barcoding, 
polymerase chain reaction and next‑generation sequencing for precise species 
identification, particularly in processed or mixed‑seafood products. It also examines 
protein‑based, nuclear and spectroscopic techniques, including enzyme‑linked 
immunosorbent assay, high‑performance liquid chromatography, matrix‑assisted 
laser desorption ionization–time‑of‑flight mass spectrometry, stable isotope analysis, 
infrared spectroscopy and nuclear magnetic resonance, used to detect fraud and verify 
provenance. In addition, the report describes innovative methods such as portable 
X‑ray fluorescence and machine‑learning models, which are emerging as tools for rapid 
origin verification.

In summary, food fraud in the aquatic sector is a widespread and complex issue with 
serious health, economic and environmental consequences. Combating it requires a 
coordinated effort involving strict enforcement, advanced analytical tools, stakeholder 
collaboration and public education. This report offers practical recommendations to 
bolster global efforts to ensure authenticity, safety and integrity in aquatic products. 
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CHAPTER 1
Background 

In 2018, the Food and Agriculture Organization of the United Nations (FAO) 
published the FAO Fisheries and Aquaculture circular Overview of food fraud in 
the fisheries sector (FAO, 2018a). This document highlights that the fisheries and 
aquaculture sector is one of the food sectors most subject to fraud. This is due to the 
complexity of the sector, the perishability of aquatic products and consumer demand, 
which is increasingly oriented towards processed products, which are more difficult to 
identify. The 2018 circular emphasizes some of the consequences of fraud for the aquatic 
sector and stresses the importance of legislative instruments and Codex Alimentarius 
texts. Building on this effort, FAO decided to develop a report highlighting the most 
common forms of fraud in the fisheries and aquaculture sector and the possible 
food‑safety implications. For this purpose, FAO and the Joint FAO/IAEA Centre of 
Nuclear Techniqes in Food and Agriculture convened experts from various disciplines 
to participate in developing the report and to contribute case studies that illustrate 
some of the most common types of fish fraud, their incidence and the public‑health 
impact, as well as tools to prevent and fight food fraud in the sector. This report also 
discusses the economic incentive of fraud in fisheries and aquaculture, the methods 
currently used to test fishery products, and the current food‑safety requirements in 
force in some countries.

Since 2018, FAO has published several additional reports on food fraud. A relevant 
resource is the report International and National Regulatory Strategies to Counter 
Food Fraud (FAO, 2022), which introduces the available international regulatory 
guidance and the potential legal strategies at national and regional levels. The report 
identifies and analyses some of the regulatory approaches to food fraud that countries 
have chosen and considers the role of the private sector in food‑fraud regulation. 
Another relevant report is the document, Food fraud – Intention, detection and 
management (FAO, 2021), which describes the key aspects of food fraud and discusses 
a set of measures that food‑safety authorities can take to stop this persistent problem. 
Lastly, it is important to mention that Codex Alimentarius is preparing guidelines 
on the prevention and control of food fraud to guide relevant competent authorities 
and food‑business operators in detecting, preventing, mitigating and controlling food 
fraud, to help protect the health of consumers and to ensure fair practices in food trade 
(including regarding feed for food‑producing animals). 
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CHAPTER 2
Introduction 

The production of fishery and aquaculture products reached 185.4 million tonnes in 
2022, with 89 percent used for human consumption, resulting in an estimated per capita 
consumption of almost 21 kg. More than 230 countries and territories participated in 
the international trade of aquatic products, reaching a record value of USD 195 billion. 
The global net trade of aquatic animal products in low‑ and middle‑income countries 
reached USD 45 billion, which is greater than that of all other agricultural products 
combined (FAO, 2024a). The volume and value of production and the complex trade 
flows make the sector especially vulnerable to fraud. Other factors that increase the 
sector’s vulnerability to fraud are the great number of aquatic species (12 413 individual 
species are included in the list of Aquatic Sciences and Fisheries Information System 
[ASFIS]) and lack of knowledge of species taxonomy; the particularities of the aquatic 
production sector, where wild‑capture fisheries represent 49  percent of production; 
and the numerous competent authorities involved in fisheries inspection and food 
control for aquatic products who must coordinate in order to cover all the necessary 
aspects to ensure product safety and authenticity. 

Food fraud is defined as a deliberate practice intended to deceive others regarding the 
prescribed specifications or expected characteristics of food (as established by national 
regulations or agreed standards and norms), to gain an unfair economic advantage. 

The consequences of food fraud are significant: consumers can be misled into 
purchasing products that are unsafe or different (or of lower quality) than advertised, 
which can harm their health. Apart from affecting consumer health, food fraud 
negatively impacts consumer trust in the food industry and in responsible authorities. 

Academia and institutions take into consideration the following classification for 
food fraud in the fisheries and aquaculture sector:

•	 Adulteration: Adulteration implies the addition of a non‑authentic or fraudulent 
substance to the final product; for instance, adding colouring agents, water, or 
other fillers to aquatic products. An example could be the addition of additives 
to tuna to make it look fresher or change the colour of the flesh. The fraudulent 
component may lead to illness.

•	 Counterfeit: Counterfeit food fraud occurs when all aspects of an original 
high‑value aquatic product are replicated in a fraudulent food product, and it is 
packaged to make it look like the original.

•	 Simulation: Simulation involves creating a product that resembles a high‑value 
aquatic commodity without being an exact copy. In other words, it is the creation 
of a fake version of the original aquatic commodity. An example is the imitation 
of crab meat with surimi or similar; that is, using deboned, washed fish flesh 
mixed with additives (usually coming from lean fish species) to simulate crab 
meat.

•	 Diversion: Diversion is the sale or distribution of legitimate products outside of 
their intended markets. An example is importing fishery products into a specific 
nation from a country that is not authorized to export to this nation. 

•	 Misbranding: Misbranding is providing false or misleading information on 
packaging, such as incorrect claims about sustainability or organic certification. 
(This can happen with both wild‑capture fishery products and farmed products.) 

•	 Overrun: Overrun happens when producers do not follow production agreements 



4 Food fraud in the fisheries and aquaculture sector

and produce a legitimate product in excess of established limits. Normally, these 
products are sold outside the regulated supply chain. An example of this is 
overfishing of certain species (beyond the agreed quota) and selling the excess 
production outside the regulated channels. 

•	 Species substitution: Species substitution involves replacing a high‑value species 
with a cheaper one for economic gain. An example of this is selling farmed 
salmon as wild‑caught or substituting red snapper (Lutjanus campechanus) 
with tilapia. When a fishery product is not captured according to established 
agreements, and the quota is exceeded, a reverse substitution can occur; that is, 
selling the illegally caught product as a similar product, even at a lower price, 
to facilitate commercialization. An example could be commercializing illegally 
landed Atlantic bluefin tuna (Thunnus thynnus) as yellowfin (Thunnus albacares) 
or bigeye tuna (Thunnus obesus). 

•	 Tampering and mislabelling: Tampering and mislabelling occur when a 
legitimate product and packaging are fraudulently used. An example is changing 
the labelling or the information about the expiry date of the product. In the case 
of fisheries and aquaculture, mislabelling can include misrepresenting the origin 
or method of production, such as labelling farmed fish as wild caught.

•	 Theft: Theft occurs when a product is stolen and passed off as if it were 
legitimately procured. Stolen products are distributed outside regulated or 
controlled supply chains.

Fishery and aquaculture products are particularly vulnerable to fraud. According to 
Marvin et al. (2016), the probability of fraud in this sector is estimated at 20.6 percent, 
significantly higher than that of meat (13.4 percent) and fruits and vegetables (10.4 percent). 
The most frequently reported types of fraud are species substitution and mislabelling, 
though the underlying causes of mislabelling are often diverse and context dependent 
(Donlan and Luque, 2019). Substitution typically involves two aquatic species: 
the  expected species, according to the label, and the  substitute, which is the actual 
species sold. A global study by Oceana (2016) found that one in five of over 25 000 
seafood samples tested were mislabelled under the name of other species, with fraud 
occurring at every stage of the value chain. Cases were reported in 55 countries across 
all continents except Antarctica, with hake, escolar and Asian catfish among the most 
substituted species. Alarmingly, 58 percent of substitutions involved species that pose 
health risks to consumers.

Further studies reinforce the scale of the issue:
•	 In  restaurants, misdescription rates are significantly higher than in retail 

settings, with 30 percent of seafood products mislabelled (Pardo, Jiménez and 
Pérez‑Villarreal, 2016).

•	 In Peru, seafood fraud was detected in 43 percent of samples, with particularly 
high rates in ceviche (78 percent) and sashimi (28 percent) (Velez‑Zuazo et al., 
2021).

•	 In the European Union, one‑third of mass caterers served mislabelled seafood, 
with pangasius frequently used as a substitute (Pardo et al., 2018).

•	 In  China,  75.5  percent  of tested seafood products were identified as species 
outside the expected family (Xiong et al., 2019).

As reflected in the numerous studies, food fraud in the fisheries and aquaculture 
sector presents unique challenges compared to other food systems. The sector’s 
specific characteristics, such as species diversity, complex supply chains and processing 
practices, require tailored approaches to prevent and control fraud. This report 
outlines common food‑fraud issues in fisheries and aquaculture and highlights some 
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of the most relevant analytical techniques to detect fraud, especially for some fraud 
categories such as species substitution. It offers information, guidance and tools to help 
public institutions and the private sector, including competent authorities, academic 
institutions, fish companies and fish workers, better understand and address these 
challenges and, by doing so, build trust and protect consumers. 
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CHAPTER 3
Food fraud in the aquatic sector:  
a potential risk to food safety

In the complex and globalized world of fisheries and aquaculture, food fraud has 
emerged as a silent but significant threat to public health. While the motivations behind 
fraudulent practices may vary, including economic gain and market manipulation, the 
consequences often converge on one critical issue: food‑safety vulnerability.

Aquatic products are particularly susceptible to various forms of fraud due to their 
high value, perishability, and the complexity of their supply chains. From adulteration 
with unauthorized substances to species substitution and mislabelling, each category 
of fraud carries distinct risks that can compromise consumer health, erode trust in the 
industry, and undermine regulatory systems.

This chapter explores the different types of food fraud relevant to fisheries and 
aquaculture, highlighting their implications for food safety. Through concrete 
examples and analysis, it aims to raise awareness regarding how fraudulent practices 
not only deceive consumers but expose them to serious health hazards.

Understanding these risks is essential for developing effective prevention strategies 
and ensuring the integrity of aquatic food products.

3.1	 ADULTERATION
There is a wide array of substances that may be added to fishery and aquaculture 
products to alter their appearance, weight, or perceived freshness. Not all adulterants 
pose direct food‑safety risks. For example, water, ice glaze, or other fillers are sometimes 
added to increase product weight. While these practices primarily affect organoleptic 
properties  (such as texture and flavour) and economic value, they may not always 
compromise consumer health. However, they still constitute fraud when not properly 
declared.

More concerning are adulterants that alter the visual appearance of fish products, 
especially when unauthorized or used in excess. A notable example is the use of carbon 
monoxide (CO) to enhance the red colour of fish flesh, particularly in species like tuna. 
While CO treatment can make fish appear fresher, its use is banned or restricted  in 
many jurisdictions as it is considered deceptive and carries potential health risks. 
Similarly,  synthetic dyes and colouring agents  may be added to mimic the natural 
coloration of premium species, which can mislead buyers and, in some cases, introduce 
toxic compounds.

Other documented adulteration practices that affect food safety include:
•	 the use of preservatives or chemicals (such as formaldehyde) to mask spoilage;
•	 the addition of flavour enhancers or masking agents to disguise off‑flavours in 

lower‑quality fish.
These practices not only deceive consumers but can undermine food safety, distort 

market competition, and erode trust in the fisheries and aquaculture sector. Effective 
monitoring, clear labelling and enforcement of food‑safety regulations are essential to 
combat adulteration and protect public health.
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3.2	 COUNTERFEIT AND SIMULATION 
High‑value aquatic products are particularly vulnerable to counterfeit and simulation 
fraud, where products are intentionally designed to imitate premium aquatic 
commodities. These practices not only deceive consumers but also pose risks by 
bypassing inspections and safety protocols that would normally apply to the genuine 
product.

In the case of counterfeit, the replication of branded or certified aquatic commodities, 
including the misuse of labels such as “wild‑caught,” “organic,” or those claiming 
sustainable fishing or farming practices, might imply the use of fake documentation 
or packaging that mimic legitimate sources, making it difficult for consumers and 
inspectors to detect the deception and avoiding certain food‑safety checks that would 
have been necessary for the real commodity.

In the case of simulation, the creation of a product that resembles a high‑value 
commodity might imply the application of processes and the use of ingredients that 
are not declared. A common example is the  imitation of crab meat using surimi, a 
processed fish paste often made from species such as Alaska pollock. While surimi is 
a legitimate product when properly labelled, it becomes fraudulent when marketed 
as real crab meat. This can be problematic, especially when undeclared additives such 
as  egg white, soy, or artificial colouring agents  are used, which may trigger  allergic 
reactions or sensitivities in consumers.
Other examples of counterfeit and simulation include:

•	 imitation shrimp or scallops  made from moulded fish paste or starch‑based 
compounds;

•	 simulated roe made from seaweed extract or gelatine, sold as caviar.
These practices can undermine traceability, food safety and consumer trust, especially 

when the substitute product is of lower nutritional value or contains undeclared 
allergens. Regulatory frameworks and inspection protocols must be adapted to detect 
and prevent both counterfeit and simulated aquatic products, particularly in complex 
international supply chains.

3.3	 DIVERSION 
When aquatic products are sold or distributed outside their intended markets, the 
product can be legitimate, but depending on the origin of the product, food safety 
might be compromised. For instance, fishery and aquaculture products coming from a 
country that is not authorized to export to the importing country due to not meeting 
the requirements to do so, can bring with them issues that were not detected in their 
country of origin. These products may not meet the importing country’s  minimum 
sanitary, environmental, or traceability standards, and any hazards present, such 
as contaminants, pathogens, or undeclared allergens, may go undetected due to 
differences in inspection protocols. 

Diversion can also occur through the re‑routing of products intended for industrial 
or animal‑feed use into the human food chain, or through the misuse of quota‑exempt 
or restricted species. In such cases, the product may not be subject to the same level of 
scrutiny, and its safety for human consumption may be questionable.

These practices undermine consumer protection, market integrity and international 
trade agreements, and require the coordinated effort of regulatory authorities, customs 
agencies and industry stakeholders to detect and prevent.

3.4	 MISBRANDING
The provision of false or misleading information on packaging, such as incorrect claims 
about sustainability or organic certification, can become a food‑safety issue. 

A common form of misbranding involves  incorrect claims about sustainability, 
origin, or organic certification. For instance, aquaculture products labelled as “organic” 
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may in fact originate from farms that do not meet the required standards. If such 
products contain  elevated levels of antimicrobials, veterinary drugs, or chemical 
residues, they can pose serious  health risks  to consumers, especially when these 
substances are not declared or exceed legal limits.

Other examples of misbranding include:
•	 misuse of eco‑labels or certification logos, without proper verification or 

licensing;
•	 false claims of geographical origin, such as labelling farmed shrimp from 

Southeast Asia as “Mediterranean” or “local”;
•	 misleading freshness indicators, such as “fresh” labels on previously frozen 

products.
Misbranding, as well as mislabelling, can also obscure  traceability, making it 

difficult to track the product’s journey through the supply chain. This is particularly 
problematic in cases of food recalls, contamination events, or illegal fishing activities, 
where accurate labelling is essential for public health and regulatory enforcement.

To combat misbranding, robust  labelling regulations,  verification systems 
and  consumer education  are critical. Technologies such as  blockchain 
traceability,  QR‑code tracking, and  DNA barcoding  are increasingly being used to 
ensure label accuracy and product authenticity.

3.5	 OVERRUN
When producers do not follow production agreements such as quotas or harvest 
volumes, often in violation of regulatory frameworks, this can lead to food‑safety 
issues, even when the product itself may be legitimate in origin. A common example 
is when fishers capture more than the authorized quota, and the excess catch is sold 
through  informal or unregulated channels. These diverted products often  bypass 
official sanitary inspections, meaning they might not be tested for contaminants, 
pathogens, or spoilage – posing risks to consumer health.

Overrun can also occur in aquaculture operations, where producers exceed stocking 
densities or harvest volumes beyond those permitted under their license. This can lead 
to:

•	 increased disease pressure  due to overcrowding, which can be a food‑safety 
problem in terms of zoonotic diseases;

•	 higher use of veterinary drugs or antimicrobials, which may not be properly 
monitored or declared;

•	 environmental degradation, which can indirectly affect product safety and 
quality.

In both wild capture and aquaculture, overrun undermines  resource 
sustainability, market fairness and consumer protection. It also complicates traceability 
systems, making it difficult to verify the origin, handling and safety of the product.

Moreover, overrun practices can mask  illegal, unreported and unregulated (IUU) 
fishing, where excess catch is intentionally hidden from authorities. This not only 
violates conservation efforts but also increases the risk of food fraud, especially when 
such products are mislabelled or mixed with legal catch.

To address overrun, it is essential to strengthen:
•	 catch documentation schemes and electronic monitoring systems;
•	 aquaculture‑production reporting and inspection of operations;
•	 cross‑border cooperation to detect and prevent unauthorized trade flows.

3.6	 SPECIES SUBSTITUTION
Species substitution  is one of the most prevalent forms of food fraud in the fishery 
and aquaculture sector. It involves replacing one declared aquatic species with another, 
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often one of lower value, more abundant, or less regulated. This practice is primarily 
driven by economic incentives and can have serious food‑safety implications.

One major concern is that the substitute species may carry food‑safety hazards that 
require specific handling, preparation, or consumption restrictions. For example:

•	 Puffer fish (fugu)  contains  tetrodotoxin, a potent neurotoxin, and must be 
prepared by licensed professionals. Substituting this species without proper 
handling can be fatal.

•	 Some fish species are not intended to be consumed raw due to their microbiological 
profile or parasite load. When substituted and served as sushi, sashimi, ceviche, 
or other raw preparations, they can pose risks and cause a variety of illnesses 
such as anisakiasis, listeriosis and vibriosis. 

In addition to health risks, species substitution undermines consumer trust, traceability 
and sustainability efforts. For instance, substituting endangered or overfished species 
with unregulated species can distort conservation data.

Detection of species substitution often requires  DNA barcoding  or  molecular 
techniques. Strengthening  traceability systems, enforcing  labelling regulations and 
increasing  awareness among consumers and stakeholders in aquatic value chains are 
essential to mitigate the risks associated with species substitution.

3.7	 MISLABELLING
When packaging is fraudulent, consumers can receive misleading information about a 
variety of aspects such as the species, ingredients, nutritional composition or expiration 
date, as well as claims related to sustainability or origin. In all cases, there can be 
implications for human health, such as:

•	 Expired products  that are relabelled with extended shelf‑life dates 
may be consumed past their safe period, increasing the risk of  microbial 
contamination or spoilage‑related illnesses.

•	 Undeclared ingredients, such as allergens (including shellfish, soy, gluten, or egg 
proteins), can trigger severe allergic reactions in sensitive individuals.

•	 Mislabelling species can result in the consumption of fish species with a different 
intended use (for example, to be consumed only cooked, not raw; or to be 
avoided by certain population groups). 

To combat mislabelling, robust  labelling regulations,  traceability 
systems and  enforcement mechanisms  are essential. Technologies such 
as blockchain, digital‑traceability platforms, and DNA‑based species identification are 
increasingly being used to verify product authenticity and ensure accurate labelling 
throughout the supply chain.

3.8	 THEFT
When a fishery or aquaculture product is stolen and passed off as if it were legitimately 
procured, these commodities often bypass official sanitary inspections, meaning they 
are not subject to the same controls for  microbiological hazards,  chemical residues, 
or temperature abuse during transport and storage. This increases the likelihood of the 
product being unfit for consumption, especially in cases where cold‑chain integrity is 
compromised or where the product originates from restricted harvest areas.

Examples of common theft‑related food fraud include:
•	 theft of high‑value species (such as abalone or sea cucumber) from harvesting 

areas, which are then sold through black markets or misrepresented in formal 
supply chains;

•	 theft of bivalve molluscs  from closed or contaminated areas, which can result 
in the distribution of products containing marine biotoxins or pathogens such 
as Vibrio  spp., leading to serious illnesses such as paralytic shellfish poisoning 
(PSP) or amnesic shellfish poisoning (ASP).
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Addressing theft in the seafood sector requires:
•	 strengthened monitoring and surveillance at harvest sites, ports and processing 

facilities;
•	 enhanced traceability systems to verify the origin and legality of products;
•	 coordinated enforcement between fishery authorities, customs and food‑safety 

agencies.
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CHAPTER 4
Economic incentive

Food fraud is commonly associated with an economic benefit for fraudsters. In the case 
of wild‑capture fisheries, the bargaining power between aquatic food dealers and vessel 
owners has been shown to play an important role in the incentive to mislabel. Vessel 
owners typically have less bargaining power due to the perishability of the products 
and limited alternatives in terms of market sale for buyers willing to accept the risk of 
purchasing fraudulent products. Dealer‑harvesters (vertically integrated companies) 
present the strongest incentives to misreport (DePiper and Holzer, 2024). 

Overall, the average price differential (and variability) varies from species to species 
and changes over time. There are studies pointing out that the mislabelling price 
differentials of substitute species range from + EUR 25 to ‑ EUR 12 (approximately 
+ USD 28 to ‑ USD 13), with sturgeon caviar having the greatest price differential of 
substitute species among a large range of studied species. The same study showed a 
substantial profit (EUR 10, approximately USD 11) for yellowfin tuna when used as a 
substitute for Atlantic bluefin and bigeye tuna. Similarly, Atlantic salmon (Salmo salar) 
labelled as Pacific salmon captures an average profit of EUR 9 (approximately USD 10) 
(Donlan and Luque, 2019). 

Food fraud creates a lot of uncertainty in consumers, and there are studies that show 
buyers are willing to pay more for a product that grants authenticity and provides 
information on the traceability of fisheries and aquaculture products. For example, 
one study analysed buyers’ willingness to pay a premium of £0.79 (approximately 
USD 0.98) for a portion of authentic pollan fillets with respect to a portion of herring 
fillets. The same study points to a premium of 7.1 percent to 16.7 percent for a portion 
of fish fillets (250g) that are more likely to be authentic compared to other products 
for which food fraud is more likely to occur (McCallum et al., 2022). The results of the 
studies show that there is an incentive for food businesses to ensure traceability and 
authenticity. This can be done through a number of strategies, such as certification, or 
by setting specific traceability requirements. 

Adulteration of food is also motivated by financial advantage. A common 
economically motivated adulteration is the undeclared substitution of ingredients in 
a product, and there are studies that point to aquatic commodities as the main food 
category subject to incidents of this nature, although the specific price differential has 
not yet been described (Everstine, Spink and Kennedy, 2013). 

The substitution of wild‑captured aquatic species with farmed aquatic species can 
have an economic incentive as well. For instance, in the United States, the price for 
farmed species such as salmon can range from USD 4.35 to USD 4.90 per fish sold 
fresh, for specimens between 10 pounds and 18 pounds, while the price of wild salmon 
can range from GBP 5.5 to GBP 7 (USD 7.23 to USD 9.21) for specimens weighing 
the same (Urner Barry, 2025). There are also differences for products like seabass and 
sea‑bream, not only due to the different production methods (wild caught versus 
farmed). European seabass (Dicentrarchus labrax) provides an interesting example of 
the price differentials that exist for the same species of fish depending on production 
method and country of origin. Supplies of wild‑caught European seabass are limited 
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and represent just 2 percent of the total commercialized, with the remaining 98 percent 
being sourced from aquaculture. In December 2024, imported, farmed seabass weighing 
400 g to 600 g from Greece and Türkiye were selling on the Roman wholesale market 
for EUR 6.80/kg and EUR 4.20/kg, respectively. By comparison, Italian farmed fish 
of the same size averaged EUR 12.50/ kg, close to double the price of Greek fish and 
triple that of fish of Turkish origin (FAO, 2025a).
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CHAPTER 5
Taxonomy and nomenclature as 
tools to prevent fraud

Worldwide, more than 36 000 species of finfish have been described. The amount of 
information required to distinguish among them is not always available to fishery 
workers due to a lack of up‑to‑date taxonomic guides at the country, regional and 
global levels. As a result, the practice of grouping species into larger categories for 
statistical purposes, as well as the misidentification of species, have become one of the 
most serious handicaps in the collection of fishery data by species. (This is especially 
the case in tropical and subtropical regions, where high biodiversity, combined with 
generally limited taxonomic capacity and resources, increase the complexity of species 
identification.) In addition, the increasing globalization of fishery products introduces 
new challenges to the identification of aquatic organisms.

An effective mitigation strategy against fraud in fisheries and aquaculture requires 
integrated action. Such a strategy should include an official list of commercial fish names 
cross‑referenced to scientific nomenclature. The list would help reduce the taxonomic 
ambiguities that enable intentional misreporting. Additionally, this nomenclature base 
must be supported by mandatory labelling rules that oblige operators to disclose, at a 
minimum, the scientific and commercial name, production method, catch or farming 
area and other traceability elements, thereby ensuring that verifiable information 
accompanies aquatic foods from landing to final sale. 

FAO provides global‑level species catalogues as well as regional and field 
species‑identification guides through the FAO FishFinder Species Identification and 
Data Programme and recently also through the EAF‑Nansen Programme, which 
improves fisheries management across Africa and the Bay of Bengal. Likewise, online 
resources, such as FishBase (an information system that provides data on the biology 
of all fish) and Eschmeyer’s Catalog of Fishes (an authoritative reference for taxonomic 
fish names) offer guidance in resolving issues regarding the correct scientific name for 
species (FAO, 2013). 

The use of proper nomenclature is crucial for accurate species identification. The 
FAO Fisheries and Aquaculture Division collates global capture and aquaculture 
production statistics by species, where available, or alternatively at genus, family, 
or higher taxonomic levels. The Aquatic Sciences and Fisheries Information System 
(ASFIS) list for fishery statistics represents the standard taxonomic reference system 
for this collection. The list is updated and released annually, with new species items 
added to accommodate new production data or in response to requests from national 
authorities and international organizations. Currently, the ASFIS list includes 13 708 
records, of which 3 901 are statistical categories used in FAO statistics (according to 
the data released in March 2025). Common names, when available, are also provided in 
English, French, Spanish, Arabic, Chinese and Russian, and the list indicates whether 
each species is included in the FAO global capture and aquaculture production datasets.

The FAO tools mentioned above, particularly the FishFinder programme and the 
ASFIS list, play a crucial role in combating food fraud, more specifically fish‑species 
substitution at the beginning of the value chain, where accurate species identification 
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is most critical. However, taxonomic nomenclature is dynamic, with species names 
and classifications continuously revised as scientific understanding evolves, requiring 
these tools to be updated regularly to maintain their effectiveness. When properly 
maintained, these tools help establish a transparent and verifiable foundation for aquatic 
food products from the moment they are landed or harvested. By improving species 
identification and standardizing nomenclature, they strengthen traceability systems 
and support regulatory frameworks aimed at preventing food fraud. Moreover, they 
empower national authorities and industry stakeholders to make informed decisions, 
enforce labelling compliance, and maintain consumer trust in seafood products.
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CHAPTER 6
Standards and norms

Norms, requirements and standards form the basis that define whether a product 
is acceptable or not and are key tools for fighting food fraud in the fisheries and 
aquaculture sector. Standards and legal instruments provide useful guidance for 
national governments in combatting food fraud. There is great variability in regulatory 
approaches to fight food fraud, and implementing and enforcing an optimal legal 
approach requires thoughtful analysis and design (Roberts, Viinikainen and Bullon, 
2022). The recently drafted Codex Alimentarius Guidelines on the Prevention and 
Control of Food Fraud (currently under review) will supplement existing Codex texts, 
all of which constitute the international framework for national strategies and the 
benchmark global standards to combat food fraud. 

6.1 	 CODEX ALIMENTARIUS STANDARDS 
A range of international organizations have processes for setting standards regarding 
food fraud. Aspects related to food fraud are already addressed in many existing Codex 
texts, such as the General Standard for the Labelling of Prepackaged Foods (CXS 
1‑1985), the General Standard for the Labelling of Food Additives when Sold as Such 
(CXS 107‑1981), the Principles for Traceability/Product Tracing as a Tool within a 
Food Inspection and Certification System (CXG 60‑2006), the Codex Code of Ethics 
for International Trade in Food including Concessional and Food Aid Transactions 
(CXC 20‑1979), the Principles and Guidelines of National Food Control Systems 
(CXG 82‑2013), the Guidelines for Design, Production, Issuance and Use of Generic 
Official Certificates (CXG 38‑2001), and the Principles and guidelines for the exchange 
of information between importing and exporting countries to support the trade in food 
(CXG 89‑2016). 

In addition, as indicated, Codex Alimentarius is currently working on guidelines 
on the prevention and control of food fraud. The purpose of this work is to provide 
guidance to competent food‑safety authorities and food‑business operators on the 
detection, prevention, mitigation and control of food fraud to help protect consumer 
health and ensure fair practices in food trade, including feed for food‑producing 
animals. This guidance is intended to support or supplement existing Codex texts by 
providing additional guidance specific to food fraud that can be considered within 
national food‑control systems.

6.2 	 PRIVATE FOOD‑SAFETY STANDARDS 
There are a number of what are commonly referred to as private‑law schemes. 
Private‑law schemes are not part of a country’s regulatory system but often form 
the basis of agreements between trading partners, such as food‑business operators. 
Many of these schemes have published standards for different aspects related to the 
food supply chain, such as food manufacturing, transportation and brokerage. These 
standards, although not focusing explicitly on food fraud, contain elements to combat 
it. This chapter will focus primarily on the standards related to food manufacturing 
and how food fraud is captured within their schemes. Several of these food‑quality and 
safety standards have existed for a number of years. SQF, for example, developed by 
the Safe Quality Food Institute, was developed in Australia in 1994, and FSSC 22000, 
developed by the non‑profit organization Foundation FSSC, was developed in 2009. 

https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B1-1985%252FCXS_001e.pdf
https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B1-1985%252FCXS_001e.pdf
https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B107-1981%252FCXS_107e.pdf
https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B60-2006%252FCXG_060e.pdf
https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXC%2B20-1979%252FCXP_020e.pdf
https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B82-2013%252FCXG_082e.pdf
https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B38-2001%252FCXG_038e.pdf
https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B89-2016%252FCXG_089e.pdf
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However, these food standards differ, and if a food manufacturer’s client asked for two 
different certifications, significant resources were required for the manufacturer to 
obtain them both. 

This is where the Global Food Safety Initiative (GFSI) comes into play. Founded in 
the year 2000, it aimed to harmonize, to a certain degree, the major food‑safety‑related 
standards, enabling them to be mutually acceptable. This was achieved by benchmarking 
the standards against certain criteria. In 2007, seven major food retailers agreed to 
reduce duplication in the supply chain through the common acceptance of any of 
the GFSI‑benchmarked schemes. Carrefour, Tesco, Metro, Migros, Ahold, Walmart 
and Delhaize paved the way to achieving GFSI’s vision of “once certified, accepted 
everywhere” (SGS, 2014). Version 7.1 introduced two new scopes of benchmarking: 
one for food fraud and one for food defence, requiring all GFSI‑recognized 
certification programmes to include vulnerability assessments and mitigation plans. As 
a consequence, all GFSI‑benchmarked schemes amended the relevant section in their 
standards.

A number of private‑law food‑safety schemes are GFSI benchmarked. These cover 
not only food but also aquaculture and agriculture. At present, thirteen schemes are 
benchmarked (GFSI, 2023): 

•	 BRCGS (formerly known as BRC)
•	 Canada GAP
•	 Equitable Food Initiative (EFI)
•	 Freshcare
•	 FSSC 22000
•	 Global Red Meat Standard (GRMS)
•	 Global Seafood Alliance
•	 Global Gap
•	 International Featured Standards (IFS)
•	 Japan Food Safety Management Association (JFSM)
•	 ASIAGAP
•	 PrimusGFS
•	 SQF
The most widely used schemes are BRCGS, FSSC 22000, IFS and SQF. SQF is 

almost exclusively used in the United States, with few certified sites outside the country. 
In contrast, FSSC 22000 is an international standard with currently more than 32 000 
certificates in Asia, Europe, North America, Latin America and the Caribbean. IFS 
and BRCGS are also international standards, but they are more dominant in specific 
regions: BRCGS in the United Kingdom of Great Britain and Northern Ireland, and 
IFS in most European countries. 

In 2014, in addition to other important topics, GFSI focused on food fraud in 
the supply chain. It published numerous documents, covering GFSI’s position on 
mitigating the public‑health risk of food fraud (GFSI, 2014) and tackling food fraud 
through food‑safety management systems (GFSI, 2019). 

The major difference between the various schemes is the level of prescriptiveness of 
the standards. While FSSC 22000 and SQF are standards that state what is required, 
they generally provide little detail on how this must be achieved. On the other hand, 
BRCGS and IFS are much more detailed regarding what is required from each of the 
certified sites. In addition, the standards have different conditions for fail/pass and 
for minor non‑compliance, non‑compliance and critical non‑compliance. A detailed 
comparison can be found in the SGS document, Comparing Global Food Safety 
Initiative (GFSI) Recognised Standards (SGS, 2014). 
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6.2.1 	 Sections on food fraud and traceability in GFSI‑benchmarked schemes: 
BRCGS, FSSC 22000, IFS and SQF
This section evaluates the commonalities of the most used standards (BRCGS, FSSC 
22000, IFS and SQF) related to food fraud and traceability. 

6.2.1.1 	 BRCGS 
Food fraud
In the current version of this standard, version 9 (BRCGS, 2022a), several sections 
mention food fraud:

Section 2, The Food Safety Plan – HACCP, indicates the following in clause 2.7.1, 
which deals with food manufacturers having to list all hazards for each process step: 

The HACCP food safety team shall identify and record all the potential hazards 
that are reasonably expected to occur at each step in relation to product, 
process, and facilities. This shall include hazards present in raw materials, those 
introduced during the process or surviving the process steps, and consideration 
of the following types of hazards: …. fraud (e.g., substitution or deliberate/
intentional adulteration… (BRCGS, 2022A, p. 25. 

Section 3.4 is categorized as fundamental and deals with internal audits. It requires 
food manufacturers to have their food‑defence and food‑fraud prevention plans 
audited. 

Food‑fraud vulnerability assessment under BRCGS also includes the risk assessment 
for raw materials received from suppliers for potential substitution or food fraud 
(Section 3.5.1.1).

This standard also requires food manufacturers to have a system in place to minimize 
the risk of purchasing fraudulent or adulterated food raw materials (Section 5.4, with 
detailed requirements in subsections 5.4.1 and 5.4.2).

In addition, Section 9.2.1 (p. 89) reads “The company shall have a documented 
supplier approval procedure which identifies the process for initial and ongoing 
approval of suppliers and the manufacturer/processor of each product traded”. This 
requirement covers the potential for adulteration or fraud.

Traceability
The BRGCS standard mentions two types of traceability: supply‑chain traceability and 
the traceability of ingredients and products within the manufacturing site.

Under the food‑safety and management‑system section (Section 3), subsection 3.9 is 
dedicated to traceability of raw materials through all stages of processing. This section 
is marked “fundamental”. This section deals with the traceability of products within 
the manufacturing site. 

For supply‑chain traceability, the entire Section 9.6 of the BRCGS standard is 
dedicated to it. However, at present, the standard only requires one‑up, one‑down 
traceability. This means the company is only required to keep records of the companies 
it purchased products from and the companies it sold products to. Further traceability 
is not required under this section. 

In addition to the actual standard, the interpretation guideline for BRCGS Global 
Standard Food Safety Issue 9 (BRCGS, 2022b) contains useful additional information 
in the sections related to food fraud, food defence and traceability. 
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6.2.1.2 	 IFS 
Food fraud
In the IFS food standard, version 8, the key section dedicated to food fraud is 
Section 4.20. Two major points are addressed in this section: food‑fraud‑vulnerability 
assessment and the development of a mitigation plan. (Section numbers with an asterisk 
(*) indicate mandatory actions and requirements.) (IFS, 2023, p. 76):

4.20 Food fraud
4.20.1 The responsibilities for a food fraud vulnerability assessment and 
mitigation plan shall be defined. The responsible person(s) shall have the 
appropriate specific knowledge.
4.20.2(*) A documented food fraud vulnerability assessment, including assessment 
criteria, shall be documented, implemented, and maintained. The scope of the 
assessment shall cover all raw materials, ingredients, packaging materials, and 
outsourced processes, to determine the risks of fraudulent activity in relation to 
substitution, mislabelling, adulteration or counterfeiting. 
4.20.3 A food fraud mitigation plan shall be documented, implemented and 
maintained with reference to the vulnerability assessment, and shall include the 
testing and monitoring methods.
4.20.4(*) The food fraud vulnerability assessment shall be reviewed, at least once 
within a 12‑month period or whenever significant changes occur. If necessary, 
the food fraud mitigation plan shall be revised/updated accordingly.

In addition, the glossary also defines each of the terms and provides additional useful 
information, such as the minimum criteria for food‑fraud‑vulnerability assessment. In 
other standards, this relevant information is provided either as part of the standard text 
itself or as a separate guidance document. 

Traceability
Traceability requirements are described in Section 4.18. Failing to comply with 
traceability requirement 4.18.1 is a so‑called “knock‑out” (KO) criterion, leading to 
the failure of the audit. The section also specifies the aspects that need to be addressed, 
such as mass‑balance checks. In the IFS food standard, in‑factory and supply‑chain 
traceability are dealt with in the same section, which is different from the BRCGS 
standard. Section 4.18 states (IFS, 2023, p. 72): 

4.18 Traceability
4.18.1(*) KO N° 7: A traceability system shall be documented, implemented, 
and maintained that enables the identification of product lots and their relation 
to batches of raw materials, and food contact packaging materials, and/or 
materials carrying legal and/or relevant food safety information. The traceability 
system shall incorporate all relevant records of: 
•	 receipt
•	 processing at all steps
•	 use of rework
•	 distribution. 
Traceability shall be ensured and documented until delivery to the customer.
4.18.2(*) The traceability system, including mass balance, shall be tested at least 
once within a 12‑month period or whenever significant changes occur. The test 
samples shall reflect the complexity of the company’s product range. The test 
records shall demonstrate upstream and downstream traceability (from delivered 
products to raw materials, and vice versa). 
4.18.3 The traceability from the finished products to the raw materials and to 
the customers shall be performed within four (4) hours maximum. Test results, 
including the timeframe for obtaining the information, shall be recorded and, 
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where necessary, actions shall be taken. Time‑frame objectives shall be aligned 
with customer requirements, if less than four (4) hours are required.
4.18.4 Labelling of semi‑finished or finished product lots shall be made at the 
time when the goods are directly packed to ensure clear traceability of goods. 
Where goods are labelled later, the temporarily stored goods shall have a specific 
lot labelling. Shelf life (e.g., best before date) of labelled goods shall be defined 
using the original production batch.
4.18.5 If required by the customer, identified representative samples of the 
manufacturing lot or batch number shall be stored appropriately and kept until 
expiration of the “Use by” or “Best before” date of the finished products and, if 
necessary, for a determined period beyond this date.

6.2.1.3 FSSC 22000
Food fraud
In the FSSC 22000 standard, in version 6 (FSSC 22000, 2023), food fraud and food 
defence, as well as the requirement for mitigation measures, are addressed in several 
sections. 

Food‑fraud mitigation and vulnerability assessment are addressed in Section 2.5.4 
(FSSC 22000, 2023, p 72):

2.5.4 FOOD FRAUD MITIGATION (ALL FOOD CHAIN CATEGORIES)
2.5.4.1 VULNERABILITY ASSESSMENT
The organization shall:
a)	 Conduct and document the food fraud vulnerability assessment, based on 

a defined methodology, to identify and assess potential vulnerabilities; and
b)	 Develop and implement appropriate mitigation measures for significant 

vulnerabilities. The assessment shall cover the processes and products 
within the scope of the organization.

2.5.4.2 PLAN
a)	 The organization shall have a documented food fraud mitigation plan, based 

on the output of the vulnerability assessment, specifying the mitigation 
measures and verification procedures. 

b)	 The food fraud mitigation plan shall be implemented and supported by the 
organization’s FSMS.

c)	 The plan shall comply with the applicable legislation, cover the processes 
and products within the scope of the organization, and be kept up to date.

d)	 For food chain category FII, in addition to the above, the organization shall 
ensure that its suppliers have a food fraud mitigation plan in place.

While this section is comparably short, the FSSC has published two additional 
guidance documents detailing relevant information on food‑fraud mitigation (FSSC 
22000, 2019a) and food defence (FSSC 22000, 2019b). 

Traceability
Unlike the BRCGS and IFS standards, no major section of the FSSC standard is 
dedicated to traceability. However, traceability is mentioned in sections 2.5.2., 4.3 and 
5.1.1. 

6.2.1.4 	 SQF
SQF has different codes for food production and manufacturing segments, including 
Primary Plant Production, Primary Animal Production, Aquaculture, Food 
Manufacturing, Pet Food Manufacturing, Animal Feed Manufacturing and Animal 
Product Manufacturing, to name but a few. This section focuses food fraud and 
traceability in the Quality Code, the Food Manufacturing Code and the Aquaculture 
Code. 
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Food fraud in the Quality Code
The SQF Quality Code, Edition 9 (SQF, 2022a), includes Section 2.7 dedicated to food 
fraud. It states (p. 52) :

2.7 2 Food Defense and Food Fraud
2.7.1 Food Defense Plan (Mandatory)
2.7.1.1. A food defence threat assessment shall be conducted to identify potential 
threats that can be caused by a deliberate act of sabotage or terrorist‑like incident. 
2.7.1.2 A food defence plan shall be documented, implemented, and maintained 
based on the threat assessment (refer to 2.7.1.1).
2.7.2 Food Fraud (Mandatory)
2.7.2.1 The methods, responsibility, and criteria for identifying the site’s 
vulnerability to food fraud, including susceptibility to raw material or ingredient 
substitution, finished product mislabeling, dilution, or counterfeiting, shall be 
documented, implemented, and maintained.
2.7.2.2 A food fraud mitigation plan shall be developed and implemented that 
specifies the methods by which the identified food fraud vulnerabilities shall 
be controlled, including identified food safety vulnerabilities of ingredients and 
materials.

Traceability in the Quality Code
Traceability is dealt with in Section 2.6 of the Quality Code (p. 50).

2.6 Product Traceability and Crisis Management
2.6.2 Product Trace (Mandatory)
2.6.3 Product Withdrawal and Recall (Mandatory)

Internal and external traceability requirements are dealt with in the same section, 
and traceability requirements, as in the BRCGS standard, are one‑up, one‑down.

Food fraud in the Food Manufacturing Code
Section 2.7 of the SQF Manufacturing Code (SQF, 2022b) provides a more detailed 
treatment of food fraud than the corresponding clauses in the other standards, defining 
requirements for both vulnerability assessment and mitigation (p. 52):

2.7 Food Defence and Food Fraud
2.7.1 Food Defence Plan (Mandatory)
2.7.1.1 A food defence threat assessment shall be conducted to identify potential 
threats that can be caused by a deliberate act of sabotage or a terrorist‑like 
incident.
2.7.1.2 A food defence plan shall be documented, implemented, and maintained 
based on the threat assessment (refer to 2.7.1.1). The food defence plan shall meet 
legislative requirements as applicable and shall include at a minimum:
i)	 The methods, responsibility, and criteria for preventing food adulteration 

caused by a deliberate act of sabotage or terrorist‑like incident;
ii)	 The name of the senior site management person responsible for food 

defence;
iii)	 The methods implemented to ensure only authorized personnel have access 

to production equipment and vehicles, manufacturing, and storage areas 
through designated access points;

iv)	 The methods implemented to protect sensitive processing points from 
intentional adulteration;
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v)	 The measures taken to ensure the secure receipt and storage of raw 
materials, ingredients, packaging, equipment, and hazardous chemicals to 
protect them from deliberate acts of sabotage or terrorist‑like incidents;

vi)	 The measures implemented to ensure raw materials, ingredients, packaging 
(including labels), work‑in‑progress, process inputs, and finished products 
are held under secure storage and transportation conditions; and

vii)	 The methods implemented to record and control access to the premises by 
site personnel, contractors, and visitors.

2.7.1.3 Instruction shall be provided to all relevant staff on the effective 
implementation of the food defence plan (refer to 2.9.2.1).
2.7.1.4 The food defence threat assessment and prevention plan shall be reviewed 
and tested at least annually or when the threat level, as defined in the threat 
assessment, changes. Records of reviews and tests of the food defence plan shall 
be maintained.
2.7.2 Food Fraud (Mandatory)
2.7.2.1 The methods, responsibility, and criteria for identifying the site’s 
vulnerability to food fraud, including susceptibility to raw material or ingredient 
substitution, finished product mislabelling, dilution, or counterfeiting, shall be 
documented, implemented, and maintained. 
2.7.2.2 A food fraud mitigation plan shall be developed and implemented that 
specifies the methods by which the identified food fraud vulnerabilities shall 
be controlled, including identified food safety vulnerabilities of ingredients and 
materials.
2.7.2.3 Instruction shall be provided to all relevant staff on the effective 
implementation of the food fraud mitigation plan (refer to 2.9.2.1).
2.7.2.4 The food fraud vulnerability assessment and mitigation plan shall 
be reviewed and verified at least annually with gaps and corrective actions 
documented. Records of reviews shall be maintained.

Traceability in the Food Manufacturing Code
Section 2.6 in the Food Manufacturing Code covers traceability more extensively than 
in the Quality Code. It also includes crisis‑management planning. The section states 
(p. 50):

2.6 Product Traceability and Crisis Management
2.6.1 Product Identification (Mandatory)
2.6.1.1 The methods and responsibility for identifying raw materials, ingredients, 
packaging, work in progress, process inputs, and finished products during all 
stages of production and storage shall be documented and implemented to 
ensure:
i)	 Raw materials, ingredients, packaging, work‑in‑progress, process inputs, 

and finished products are clearly identified during all stages of receipt, 
production, storage, and dispatch; and

ii)	 Finished product is labelled to the customer specification and/or regulatory 
requirements. 

2.6.1.2 Product start‑up, product changeover, and packaging changeover 
(including label changes) procedures shall be documented and implemented to 
ensure that the correct product is in the correct package and with the correct 
label and that the changeover is inspected and approved by an authorized 
person. Procedures shall be implemented to ensure that label use is reconciled 
and any inconsistencies investigated and resolved. Product changeover and label 
reconciliation records shall be maintained. 
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2.6.2 Product Trace (Mandatory)
2.6.2.1 The responsibility and methods used to trace product shall be documented 
and implemented to ensure:
i)	 Finished product is traceable at least one step forward to the customer and 

at least one step back from the process to the manufacturing supplier;
ii)	 The receipt dates of raw materials, ingredients, food contact packaging and 

materials, and other inputs are recorded (refer to 2.8.1.8 for traceback of 
allergen containing food products.);

iii)	 Traceability is maintained where product is reworked (refer to 2.4.6); and
iv)	 The effectiveness of the product trace system is reviewed at least annually, 

as part of the product recall and withdrawal review (refer to 2.6.3.2).
Records of raw and packaging material receipt and use and finished product 
dispatch and destination shall be maintained.
2.6.3 Product Withdrawal and Recall (Mandatory)
2.6.3.1 The responsibility and methods used to withdraw or recall a product shall 
be documented and implemented. The procedure shall:
i)	 Identify those responsible for initiating, managing, and investigating a 

product withdrawal or recall;
ii)	 Describe the management procedures to be implemented, including sources 

of legal, regulatory, and expert advice, and essential traceability information;
iii)	 Outline a communication plan to inform site personnel, customers, 

consumers, authorities, and other essential bodies in a timely manner about 
the nature of the incident; and

iv)	 Ensure that SQFI, the certification body, and the appropriate regulatory 
authority are listed as essential organizations and notified in instances of 
a food safety incident of a public nature or product recall for any reason.

2.6.3.2 The product withdrawal and recall system shall be reviewed, tested, 
and verified as effective at least annually. Testing shall include incoming 
materials (minimum traceability one step back) and finished product (minimum 
traceability one step forward). Testing shall be carried out on products from 
different shifts and for materials (including bulk materials) that are used across a 
range of products and/or products that are shipped to a wide range of customers.
2.6.3.3 Records shall be maintained of withdrawal and recall tests, root cause 
investigations into actual withdrawals and recalls, and corrective and preventative 
actions applied. 
2.6.3.4 SQFI and the certification body shall be notified in writing within 
twenty‑four (24) hours upon identification of a food safety event that requires 
public notification. SQFI shall be notified at foodsafetycrisis@sqfi.com.
2.6.4 Crisis Management Planning
2.6.4.1 A crisis management plan based on the understanding of known 
potential dangers (e.g., flood, drought, fire, tsunami, or other severe weather 
events, warfare or civil unrest, computer outage, pandemic, loss of electricity 
or refrigeration, ammonia leak, labour strike) that can impact the site’s ability 
to deliver safe food shall be documented by senior management, outlining the 
methods and responsibility the site shall implement to cope with such a business 
crisis. The crisis management plan shall include, at a minimum:
i)	 A senior manager responsible for decision making, oversight, and initiating 

actions arising from a crisis management incident;
ii)	 The nomination and training of a crisis management team;
iii)	 The controls implemented to ensure any responses do not compromise 

product safety;
iv)	 The measures to isolate and identify product affected by a response to a 

crisis;

mailto:foodsafetycrisis@sqfi.com
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v)	 The measures taken to verify the acceptability of food prior to release;
vi)	 The preparation and maintenance of a current crisis alert contact list, 

including supply chain customers;
vii)	 Sources of legal and expert advice; and
viii)	 The responsibility for internal communications and communicating with 

authorities, external organizations, and media.
2.6.4.2 The crisis management plan shall be reviewed, tested, and verified at least 
annually with gaps and appropriate corrective actions documented. Records of 
reviews of the crisis management plan shall be maintained.

Food fraud in the Aquaculture Code
Also, here, the section dealing with food fraud is Section 2.7 (SQF, 2020). The section 
states (p. 51):

2.7 Food Defence and Food Fraud
2.7.1 Food Defence Plan (Mandatory)
2.7.1.1 A food/product defence threat assessment shall be conducted to identify 
potential threats as a result of a deliberate act of sabotage or terrorist‑like 
incident.
2.7.1.2 A food defence plan shall be documented, implemented, and maintained 
based on the threat assessment (refer to 2.7.1.1). The food defence plan shall meet 
legislative requirements as applicable and shall include at a minimum:
i)	 The methods, responsibility, and criteria for preventing food adulteration 

caused by a deliberate act of sabotage or terrorist‑like incident;
ii)	 The name of the senior site management person responsible for food 

defence;
iii)	 The methods implemented to ensure only authorized personnel have access 

to production equipment, vehicles, and storage areas through designated 
access points;

iv)	 The methods implemented to protect sensitive operational points from 
intentional adulteration;

v)	 The measures taken to ensure the secure receipt and storage of inputs, 
equipment, and hazardous chemicals to protect them from deliberate acts 
of sabotage or terrorist‑like incident;

vi)	 The measures implemented to ensure inputs and products are held under 
secure storage and transportation conditions; and

vii)	 The methods implemented to record and control access to the premises by 
employees, contractors, and visitors.

2.7.1.3 Instruction shall be provided to all relevant staff on the effective 
implementation of the food defence plan (refer to 2.9.2.1).
2.7.1.4 The food defence threat assessment and prevention plan shall be reviewed 
and tested at least annually or when the threat level, as defined in the threat 
assessment, changes. Records of reviews of the food defence plan shall be 
maintained.
2.7.2 Food Fraud (Mandatory)
2.7.2.1 The methods, responsibility, and criteria for identifying the site’s 
vulnerability to food fraud shall be documented, implemented, and maintained. 
The food fraud vulnerability assessment shall include the site’s susceptibility to 
product substitution, mislabelling, dilution, and counterfeiting or stolen goods 
that may adversely impact food safety.
2.7.2.2 A food fraud mitigation plan shall be developed and implemented that specifies 
the methods by which the identified food fraud vulnerabilities shall be controlled and 
how the plan is communicated to relevant staff to ensure effective implementation. 
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2.7.2.3 The food fraud vulnerability assessment and mitigation plan shall 
be reviewed and verified at least annually, with gaps and corrective actions 
documented. Records of reviews shall be maintained.

Traceability in the Aquaculture Code
As in the Food Manufacturing Code, traceability is dealt with in Section 2.6 of the 
Aquaculture Code, which states (p. 49):

2.6 Product Traceability and Crisis Management
2.6.1 Product Identification and Traceability (Mandatory)
2.6.1.1 The methods and responsibilities for the product identification system 
shall be documented and implemented to ensure:
i)	 Inputs, work‑in‑progress, and aquacultural products are clearly identified 

during all stages of receipt, operations, storage, shipping, and transportation; 
and

ii)	 All aquacultural products are identified and/or labelled to customer 
specification and/or regulatory requirements. Product identification 
records shall be maintained.

2.6.1.2 The responsibility and methods used to trace the product shall be 
documented and implemented to ensure:
i)	 Aquacultural product is traceable to the customer (one up) and provides 

traceability through the process to the input supplier and date of receipt of 
inputs, materials, and other inputs (one back);

ii)	 Traceability is maintained where product is reworked (refer to 2.4.3); and
iii)	 The effectiveness of the product trace system is reviewed at least annually as 

part of the product recall and withdrawal review (refer to 2.6.2.1). Records 
for the receipt and use of agricultural inputs and packaging and for finished 
product dispatch and destination shall be maintained.

2.6.2 Product Withdrawal and Recall (Mandatory)
2.6.2.1 The responsibility and methods used to withdraw or recall product shall 
be documented and implemented. The procedure shall:
i)	 Identify those responsible for initiating, managing, and investigating a 

product withdrawal or recall;
ii)	 Describe the procedures to be implemented by site management;
iii)	 Outline a communication plan to inform customers, consumers, authorities, 

and other essential bodies in a timely manner appropriate to the nature of 
the incident;

iv)	 Describe how the withdrawal and recall system is reviewed, tested, and 
verified at least annually (mock recall); and

v)	 Ensure that SQFI, the certification body, and the appropriate regulatory 
authority are listed as essential organizations and are notified in instances 
of a food safety incident of a public nature or product recall. Records of all 
product withdrawals, recalls, and mock recalls shall be maintained.

2.6.2.2 Investigation shall be undertaken to determine the cause of a withdrawal 
or recall, and details of investigations and any action taken shall be documented 
and recorded.
2.6.2.3 SQFI and the certification body shall be notified in writing within 
twenty‑four (24) hours upon identification of a food safety event that requires 
public notification. SQFI shall be notified at foodsafetycrisis@sqfi.com.
2.6.3 Crisis Management Planning
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2.6.3.1 The methods and responsibility for execution of a crisis management plan 
shall be documented and implemented. The plan shall include:
i)	 A listing of known potential dangers (e.g., hurricanes, low water levels, 

fire, tsunamis, or other severe weather or global events such as pandemics, 
warfare, or civil unrest) that can impact the site’s ability to deliver safe food;

ii)	 Designated site management responsible for decision making, oversight, 
communication, and management of the crisis management plan; and

iii)	 Control measures to ensure any affected product is identified, isolated, and 
disposed of appropriately.

2.6.3.2 The crisis management plan shall be reviewed, tested, and verified at least 
annually, with gaps and appropriate corrective actions documented. Records of 
reviews of the crisis management plan shall be maintained.

6.2.2 	 Comparison and outlook
While all GFSI‑benchmarked food and aquaculture‑related schemes deal with food 
fraud, food defence and traceability, the level of detail differs significantly between the 
standards. Also, mitigation‑plan requirements differ in the level of detailed requirements. 
With respect to vulnerability assessments and mitigation plans it is worth noting that 
several foresight systems have been developed to identify food‑fraud issues early. Most 
of these systems monitor events and news across the globe for keywords and can trigger 
specific alarms if the commodity in question is affected. A public system is the monthly 
newsletter of the European Commission (European Commission, 2025). Examples 
of systems behind paywalls that deliver tailored solutions specific to commodities 
are SGS Digicomply (SGS, 2023), Horizon Scan (FERA, 2023), and the Food Fraud 
Database (FoodChain ID, 2023). These foresight systems are not compulsory for any 
of the standards mentioned above but tend to be viewed favourably by auditors. Which 
of the standards is best for certification depends on the client’s requirements, although 
GFSI aims to make all benchmarked standards mutually acceptable. And while several 
major supermarkets have committed to mutually accept any of the GFSI‑benchmarked 
standards, there are clear geographically‑based preferences for specific standards. For 
example, the BRCGS standard is dominant in the United Kingdom, and some UK 
retailers specifically ask for this certification. 

6.2.3 	 Other standards
In addition to the GFSI‑benchmarked standards, several not‑for‑profit organizations 
have issued their own guidance on food fraud vulnerability assessment and mitigation. 
The U.S. Pharmacopeial (USP), through the Food Chemicals Codex, developed a 
Food Fraud Mitigation Guidance document (USP, 2016). A later scientific paper 
by Gendel, Popping and Chin (2020) discusses the development and application of 
this USP approach; the authors were members of the USP Expert Panel involved in 
preparing the original guidance. In addition to the development of such documents, 
the USP Food Chemicals Codex has numerous standards for food ingredients and 
dietary supplements that provide information on analytical methods and parameters to 
ensure the authenticity of ingredients or supplements, as well as a hazard‑classification 
document (Everstine et  al., 2018). Similar documents have been generated by 
other not‑for‑profit organizations such as the Association of Official Analytical 
Collaboration and IFT.

Overall, numerous documents on food fraud and mitigation measures have 
been developed by different bodies, and their usefulness has been evaluated by the 
International Life Sciences Institute Europe Food Fraud task force. The evaluation 
resulted in the publication Food Inauthenticity: Authority Activities, guidance for food 
operators, and mitigation tools (Popping et al., 2022). 
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6.3	 NORMS AND RELEVANT INSTRUMENTS FOR FISH FRAUD 
National governments and regional organizations are uniquely positioned to develop, 
implement and enforce measures to combat food fraud in the fisheries and aquaculture 
sector. International instruments such as Codex Alimentarius texts and other 
frameworks, including the FAO Voluntary Guidelines for Catch Documentation 
Schemes (FAO, 2017), the Agreement on Port State Measures (FAO, 2024b), the United 
Nations Convention on Contracts for the International Sale of Goods (United Nations, 
2010), and the International Institute for the Unification of Private Law’s Principles 
of International Commercial Contracts (UNIDROIT, 2016), offer a foundational 
structure for addressing food‑fraud issues associated with fisheries and aquaculture. 
While some governmental efforts are emerging, specific regulatory actions targeting 
food fraud remain limited. This is largely due to the complex nature of food fraud 
(which has hidden impacts), lack of awareness on the risks posed by food fraud, lack 
of centralized data, globalized and sometimes opaque supply chains, the sophisticated 
methods of food fraud used, and the economic incentives that drive fraudulent 
behaviour.

One of the key challenges lies in the difficulty of clearly defining food fraud in the 
absence of any internationally agreed upon legal definitions of the concept. Often, its 
elements fall within the grey area between adulteration (foods harmful to health) and 
misbranding (false representation of a product’s nature or quality). This ambiguity 
can lead to fragmented enforcement and a lack of targeted regulatory focus, given 
that the regulatory responses to the two different forms of food fraud are generally 
very different. Adulteration is often criminalized, whereas misbranding may more 
commonly be considered an administrative offence, meaning that they may be subject 
to different enforcement regimes. 

To effectively regulate food fraud, governments – with the active participation of the 
private sector ‑ must adopt a dual approach: prevention and enforcement. Preventive 
strategies, which may need to be prioritized over enforcement after an incident has 
already occurred, can be embedded across various regulatory domains, from illegal 
fishing and food safety to consumer protection, and criminal legislation. Nonetheless, 
prevention alone is insufficient. Detection and enforcement are essential. This includes 
market inspections, official food controls, and collaboration between public and 
private sectors. Surveillance and monitoring systems play a critical role in identifying 
and addressing fraudulent activities.

In 2022, FAO described six strategic approaches to regulating food fraud that should 
consider the food‑safety and quality legal framework, consumer‑protection legislation,  
contract law, criminal‑law framework, e‑commerce operations, and the role of the 
private sector (FAO, 2022a). A key part of any of these strategies is assessing food‑fraud 
vulnerability – understanding how and where fraud is likely to occur. Fraud is often 
seen as a  crime of opportunity, where motivated individuals exploit weak controls, 
technical loopholes and complex supply chains like those of aquatic products. Factors 
such as economic pressure, business culture and lack of oversight can also influence the 
likelihood of fraud.

Food safety and quality legal framework
This approach relies on existing laws that aim to protect food safety and quality. It 
places the main responsibility on food‑business operators, who must ensure that their 
products are safe and meet quality standards, as well as not being fraudulent. This 
includes keeping proper records, applying control systems like  hazard analysis and 
critical control points (HACCP), and having procedures in place for traceability and 
product recalls.



29Standards and norms

Although authorities oversee both food safety and quality, limited resources often 
mean that food‑fraud risks receive less attention compared to direct safety concerns. 
Food safety authorities may also lack awareness, appropriate training, as well as the 
equipment necessary to detect fraudulent products and practices, as the tools and 
methods they use to check for safety may not always be appropriate to also control for 
the authenticity of the product. To strengthen this framework, new technologies such 
as blockchain are being explored to improve transparency and traceability across the 
supply chain.

Food labelling is also a key tool in this strategy, helping consumers make informed 
choices. However, labelling alone cannot fully prevent fraud schemes. Labelling could 
be strengthened through third‑party certification schemes (for instance, for organic or 
sustainable seafood) that can help distinguish genuine products from fraudulent ones, 
but they require strong oversight and may be costly for small producers.

Consumer protection legislation
This approach aims to protect consumers from deceptive practices and ensure they 
receive accurate and truthful information about the food they purchase. Many types 
of food fraud, such as false labelling, deceptive marketing, or misrepresentation of 
product quality, are covered by laws that regulate unfair trade practices. 

International guidelines, such as the  United Nations Guidelines for Consumer 
Protection (UNCTAD, 2016), support this strategy by promoting fair business 
practices, access to clear and accurate product information, and protection of consumers’ 
economic interests. The United Nations Guidelines for Consumer Protection also 
specifically calls for action against food adulteration and false or misleading marketing 
claims, reinforcing the importance of transparency and accountability in food labelling 
and advertising.

Contract law
Food fraud often involves a violation of contract terms within the supply chain. This 
happens when a supplier knowingly delivers a product that does not match what 
was agreed upon, such as a different species, lower quality, or misrepresented origin, 
with the intent of deceiving the buyer. Such cases can be addressed through domestic 
contract law, which allows the affected party to take legal action and seek compensation. 
This highlights the role that the private sector can have – independently of any action 
from the public sector – in combatting food fraud in their own supply chains. On an 
international level, legal frameworks like the International Institute for the Unification 
of Private Law’s Principles of International Commercial Contracts (UNIDROIT, 
2016) also support cancelling contracts if they were based on fraudulent information 
or failure to disclose important facts. This aligns with the core idea of food fraud as 
a deliberate act of deception for unfair gain.

Criminal law framework
Food fraud – as the name implies – is fraud, a crime in virtually all criminal laws around 
the world. This approach treats food fraud – when it fulfils the elements of the crime as 
established by the law – as a criminal offense, using national criminal laws that define 
fraud and adulteration to punish and deter offenders. To apply this effectively, it is 
important to understand the different types of fraudsters, such as insiders, opportunists, 
or even organized‑crime groups, who may be involved in complex schemes.

E‑commerce operations
Online food sales present unique challenges that require specific legal and strategic 
approaches as food operator’s responsibilities in food e‑commerce operations are 
often more difficult to identify and enforce. A strong legal framework is essential 
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to protect consumers buying food online and to prevent fraud in the online setting. 
One key concern is traceability, as digital supply chains are often complex and spread 
across multiple regions. Technologies like blockchain are being explored to improve 
transparency and track products more effectively. Additionally, some authorities use 
strategies such as “mystery shopper” methods (where the inspector purchases food 
products online for inspection, without revealing their identity) to conduct official 
controls for food ordered online.

Role of the private sector
The private sector plays a vital role in addressing food fraud through various collaborative 
approaches. One method is self‑regulation, where companies voluntarily adopt rules, 
such as codes of conduct or corporate social‑responsibility initiatives, without 
direct government involvement. While this can improve transparency and consumer 
trust, it may lack strong enforcement. A more structured approach is  co‑regulation, 
which combines industry‑led efforts with government oversight, often through 
public–private partnerships and data sharing (see, for example, Case study 5 in this 
publication). Initiatives such as the GFSI support this model by offering guidance on 
food‑fraud prevention within food‑safety systems. In addition, cooperation between 
governments, businesses, consumers and international organizations can lead to 
impactful joint actions. An example is Operation OPSON, a global campaign led 
by Europol and INTERPOL to combat counterfeit and substandard food. Another 
tool is the use of  transnational contracts  in global supply chains, which can include 
technical standards, quality requirements and third‑party certifications to prevent 
fraud. However, these contracts can be difficult to monitor, may lack accountability 
to consumers, and can be undermined by actors who do not follow the rules. Despite 
these challenges, the private sector remains a key partner in building more transparent 
and trustworthy seafood supply chains.

Some important fish‑importing markets have established instruments to fight food 
fraud in the food sector in general and in the aquatic sector in particular. For example, 
the European Union has established Regulation (EC) No 178/2002 of the European 
Parliament and of the Council, which outlines the general principles and requirements 
of food law, emphasizing the importance of food safety. Specifically, Article 8 on the 
protection of consumer interests states that (European Union, 2002): 

Food law shall aim at the protection of the interests of consumers and shall 
provide a basis for consumers to make informed choices in relation to the foods 
they consume. It shall aim at the prevention of:
a)	 fraudulent or deceptive practices;
b)	 the adulteration of food; and
c)	 any other practices which may mislead the consumer.

Another legislative instrument that is applicable to fraud is Regulation (EU) 
2017/625, which aims to guarantee that legal practices strengthen official control 
checks and, as such, may help fight fraudulent and deceptive practices. Regulation 
(EU) No 1169/2011 on Food Information to Consumers (FIC) and Regulation (EU) 
No 1379/2013 on the common organisation of the markets in fishery and aquaculture 
products represent the detailed legislation on identification and labelling of fishery and 
aquaculture products.

In the Unites States of America, federal legislation plays an important role in 
reducing the incidence of seafood mislabelling and fraud, which may also support 
more sustainable fisheries and strengthen seafood supply‑chain resilience. The US 
FWS Lacey Act of 1900 (US 16 U.S.C. §§ 3371‑3378) and the US Magnuson‑Stevens 
Fishery Conservation and Management Act (16 U.S.C. 1801‑1882, 90 Stat. 331 § 2) are 

https://www.europol.europa.eu/operations-services-and-innovation/operations/operation-opson
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long‑standing acts that prohibit the selling of fish in violation of state, federal, or foreign 
laws. The Seafood Import Monitoring Program (NOAA 15 CFR part 902, Vol 81) is 
a mandatory federal reporting procedure for imported fish and fish products from 
initial harvest to arrival at the US port of entry, particularly species at high risk of IUU 
fishing or seafood fraud. The Country of Origin Labelling regulation (USDA 7 CRF 
Part 60) requires importers and vendors to retain seafood origin and production data 
from the US port of entry to the end consumer. Logistically, the National Oceanic and 
Atmospheric Administration’s (NOAA’s) National Seafood Inspection Laboratory 
(60 Stat. 1087, U.S.C. 1621) supports US seafood commerce and trade by providing 
analytical services for seafood safety and quality, and the NOAA Seafood Inspection 
Program (7 U.S.C.  1621) provides voluntary seafood‑product inspections, grading, 
process audit and export certification, among others. 
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CHAPTER 7

Analytical tools to detect food 
fraud in the aquatic sector

7.1 	 METHODS FOR FISH‑SPECIES IDENTIFICATION (OR VERIFICATION) AND 
DIFFERENTIATION (OR DISCRIMINATION)

The available methods for identifying fish species can be divided into three broad 
groups: protein‑based methods, DNA‑based methods and chemical‑fingerprinting 
methods. Protein‑based methods include established techniques focusing on the analysis 
of physico‑chemical differences, amino‑acid composition and antigenic properties of 
muscle‑tissue proteins consisting of myofibril proteins (myosin, actin, tropomyosin 
and troponin), connective and stromal proteins (elastin and collagen), and sarcoplasmic 
proteins (enzymes involved in the intermediary metabolism of the muscle cells) (Lago 
et al., 2014). Despite the view that most of the traditional and official methods used 
in species identification are based on the analysis of protein markers (Rasmussen and 
Morrissey, 2008; Teletchea, 2009; Lago et al., 2014), DNA‑based methods appear to be 
by far the most widely used (Griffiths et al., 2014; Naaum and Hanner, 2016).

The use of DNA‑based methods presents a number of advantages over protein‑based 
methods. First, phylogenetic studies have shown that DNA harbours a greater amount 
of information than proteins due to the degeneracy of the genetic code and the presence 
of many non‑coding regions (Teletchea et al., 2005). Whereas proteins vary with tissue 
type, age and status, DNA is largely independent of these factors. In fact, DNA is 
present in all cell types and therefore it can be extracted from any tissue, allowing 
the collection and storage of samples at any stage of the fishery chain. An additional 
key feature is that, although DNA can be altered by various types of processing, such 
as canning and heating, it is generally more resistant and thermostable than proteins 
(Teletchea et al., 2005). In fact, protein‑based methods can only be used to analyse fresh 
samples, as proteins in processed products denature upon heating. In contrast, short 
DNA fragments can usually be recovered and used for seafood identification even in 
highly processed products (Teletchea et al., 2005; Naaum and Hanner, 2016). Overall, 
methods based on DNA analysis are more effective because of higher specificity and 
sensitivity, and because DNA can be amplified from few molecules even in degraded 
samples (Böhme et al., 2019). Therefore, DNA‑based methods, which include a wide 
range of techniques and equipment, have become increasingly relevant for addressing 
food‑authentication problems. Most of the methods currently in use rely on polymerase 
chain reactions (PCRs) for the survey of informative DNA present in food matrices 
(Böhme  et  al., 2019). The resulting PCR amplicons are then analysed (differently – 
depending on the method) to reveal the characteristic polymorphisms under study. The 
cytochrome c oxidase subunit I (COI), the cytochrome b (cytb) and the 16S ribosomal 
RNA (16S rRNA) mitochondrial genes have been the most targeted for fish‑species 
identification. DNA barcoding, proposed by Hebert et al. in 2003, has been claimed 
to be the most efficient method for identifying living beings, and has also become a 
key player in ensuring the high quality of foodstuffs (Galimberti et al., 2015, 2019). In 
2011, the United States Food and Drug Administration proposed it as official method 
for seafood‑species identification (Handy et al., 2011). Teletchea (2009) reported that 
three methods were used particularly for fish‑species identification, namely restriction 
fragment length polymorphism (RFLP), PCR sequencing and species‑specific PCR. 
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More recently, in a survey conducted across European Union private and official 
laboratories, Griffiths et  al. (2014), confirmed that DNA‑based methods were far 
more prevalent, although the use of protein‑based methods, and especially isoelectric 
focusing (IEF), was still reported. Moreover, the authors showed that the most widely 
used DNA‑based methods were forensically informative nucleotide sequencing (FINS) 
and RFLP. Recently, a systematic review and meta‑analysis performed by Luque and 
Donlan (2019) to characterize seafood mislabelling worldwide highlighted that most 
of the available studies on the topic (94  percent) relied on DNA‑based methods, 
while protein‑based methods, such as IEF and immunological assays, were used 
far less. Finally, species identification using next‑generation sequencing (NGS) has 
gained considerable popularity in recent years, and it is expected that this innovative 
DNA‑based technology will be increasingly used in the future (Lo and Shaw, 2018). 
In DNA‑based methods, both nuclear and mitochondrial‑specific genes are used as 
molecular targets. The following sections discuss traditional and innovative protein‑ 
and DNA‑based methods. 

7.1.1 	 Protein‑based methods 
7.1.1.1 	 Electrophoretic techniques: isoelectric focusing and two‑dimensional 
electrophoresis
Electrophoresis is a technique applied to separate charged molecules through a solution 
or a gel by means of an electric field. The mobility and the separation of the molecules 
depend on the net charge of the molecule, the size and shape of the molecule, the 
ionic strength, the field strength, and the properties of the matrix through which the 
molecule migrates. Proteins are amphoteric compounds whose net charge depends on 
the pH‑dependent ionization of amino acid side‑chain carboxyl and amino groups. 
Thus, each protein species is characterized by a pH value, called the isoelectric point, 
or pI, at which the molecule has no net charge as a result of obtaining an equal number 
of negative and positive charges. Therefore, the pH‑dependent mobility of proteins 
can be used to separate them by their isoelectric points through the application of an 
electrophoretic technique called IEF (Verrez‑Bagnis et al., 2019). The use of the IEF 
technique with water‑soluble sarcoplasmic proteins has been successfully applied for 
species authentication in white fish species (Flatfish and Sparidae), catfish, tilapia, 
snapper, tuna, bonito, mackerel, swordfish (Xiphias gladius) and spearfish, puffer fish 
and shrimp (Rehbein et  al., 1995; Bossier and Cooreman, 2000; Renon et  al., 2005; 
Ataman et al., 2006; Ortea et al., 2010). The method has been validated by the United 
States Food and Drug Administration (FDA) since the 1990s and was established by the 
Association of Official Analytical Collaboration as the official method of fish‑species 
identification in 1995 (AOAC Official Method 980.16: “Identification of Fish Species 
‑ Thin Layer Polyacrylamide Gel Isoelectric Focusing Method”). It is one of the 
official methods applicable for seafood regulatory control (https://www.fda.gov/food/
science‑research‑food/regulatory‑fish‑encyclopedia‑rfe). However, the technique is 
not suitable for the identification of species in cooked and smoked products because 
the heat treatments induce pronounced denaturation and degradation of the proteins, 
resulting in the loss of characteristic protein bands in the IEF (Verrez‑Bagnis et al., 
2019). In order to expand the use of electrophoretic methods for the acquisition of 
species‑identification patterns, alternative protocols based on urea IEF or sodium 
dodecyl sulphate gel electrophoresis (SDS‑PAGE) have been proposed and applied 
to seafood‑species identification in processed products (Etienne et  al., 2000; Mackie 
et al., 2000). Further evolution of electrophoretic techniques was represented by the 
combination of the SDS‑PAGE technique and IEF through the implementation of 
two‑dimensional electrophoresis (2‑DE) protocols. In 2‑DE, proteins are sequentially 
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separated according to pI and molecular weight, allowing the differentiation of species 
that share an identical IEF profile. Profiles of sarcoplasmic proteins obtained through 
2‑DE have been successfully used to differentiate several fish categories and to identify 
species in both fresh and heat‑treated seafood (Valenzuela et al., 1999; Piñeiro et al., 
2001; Chen et al., 2004; Berrini et al., 2006). In addition, 2‑D electrophoretic analysis is 
the preliminary step in selecting proteins and peptides for identification analysis using 
spectrophotometric techniques, described in Section 7.6.

7.1.1.2 	 Immunological and chromatographic methods: enzyme‑linked immunosorbent 
assay and high‑performance liquid chromatography
Alternative analytical approaches to electrophoretic techniques include the use 
of immunoassays, specifically enzyme‑linked immunosorbent assay (ELISA) and 
high‑performance liquid chromatography (HPLC) (Civera, 2003; Teletchea, 2009; 
Lago et  al., 2014). Immunological methods are based on specific antigen‑antibody 
(Ag‑Ab) binding reactions. Muscle proteins have been applied in several studies as 
antigens for the production of polyclonal or monoclonal antibodies in the setting of 
ELISA tests and strip immunoassay to identify several fish and seafood species (An 
et  al., 1990; Huang et  al., 1995; Céspedes et  al., 1999; Asensio et  al., 2003, Asensio 
et  al., 2008; Gajewski et  al., 2009). Two major limitations in the identification of 
standardizable ELISA methods are the difficulty in selecting antibodies with a high 
degree of specificity and the incidence of cross‑reactions with non‑target species, 
and the thermostability of antigenic determinants, which limits the applicability 
of such methods to the analysis of processed products (Ruethers et  al., 2020). 
High‑performance liquid chromatography is an analytical method that separates 
molecules using their polarity according to their distribution between a polar mobile 
phase and an organic phase that is fixed to a matrix. The use of HPLC, in addition 
to making it possible to obtain species‑specific protein chromatographic profiles, 
enables the quantitative estimation of the profiles returned by the analysis, making 
the method also applicable to the analysis of composite products and mixtures of fish 
products (Lago et al., 2014). High‑performance liquid chromatography protocols have 
been successfully applied for fish identification since the 1990s (Armstrong, 1992; 
Asensio et al., 2001). Nevertheless, according to Lago et al., (2014), the main HPLC 
disadvantage is represented by protein degradation occurring during the preparation 
of the samples prior to the chromatographic test. Indeed, according to the authors, this 
process can generate sarcoplasmic‑protein clumping, potentially distorting the final 
chromatogram resulting from the HPLC analysis.

7.1.1.3	 Spectrometric methods
Spectrometric methods applied to species identification and specifically mass 
spectrometry (MS) (mainly matrix‑assisted laser desorption/ionization‑time of flight 
[MALDI‑TOF] and electrospray‑ion trap mass spectrometry) fall under the umbrella of 
proteomic techniques and are recognized as reliable and accurate tools for food‑product 
authentication (Carrera et al., 2013). These methods cannot be considered stand‑alone 
techniques and must be coupled with preliminary chromatographic or electrophoretic 
methods for the selection of peptide markers for identification analysis. Therefore, 
for seafood authentication purposes, they are generally associated with preliminary 
selection protocols in 2‑DE electrophoresis or HPLC (Rodríguez and Ortea, 2017; 
Verrez‑Bagnis et  al., 2019; Zambonin, 2021). In particular, at the European level, a 
MALDI–TOF MS–based method has been validated for unambiguous identification of 
different relevant species belonging to the Gadiform, Perciform and Pleuronectiform 
orders (Mazzeo and Siciliano, 2016; Stahl and Schröder, 2017).
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An obstacle to the widespread use of the technique for monitoring the fish supply 
chain is the need to implement reference databases to identify the protein fingerprints 
obtained from the unknown samples for the selected peptide biomarkers (Stahl and 
Schröder, 2017).

7.1.2	 Traditional DNA‑based methods
7.1.2.1	 Methods based on DNA sequencing
Introduction to Sanger sequencing (first generation sequencing)
The DNA sequencing method developed by Sanger et  al. (1977) forms the basis of 
automated “cycle” sequencing reactions. This type of sequencing, also known as the 
chain‑termination method, works as a classical PCR on the purified PCR amplicons 
using the same primers jointly with a DNA polymerase and a mix of deoxynucleotide 
triphosphate (dNTPs) and dideoxynucleotides (ddNTPs). These ddNTPs lack a 
3′‑OH group that is required for the formation of a phosphodiester bond between two 
nucleotides. Therefore, their incorporation stops the extension of the DNA strand. 
The DNA sample is divided into four separate sequencing reactions, containing all 
four of the standard dNTPs (dATP, dGTP, dCTP and dTTP), the DNA polymerase, 
and only one of the four ddNTPs (ddATP, ddGTP, ddCTP, or ddTTP) for each 
reaction. The ddNTPs are fluorescently labeled for detection in automated sequencing 
machines. The four reactions can be incorporated into a single reaction run and the 
DNA sequence can be read from fluorescent labels. A camera captures the fluorescence 
emission spectra. Each of the four ddNTPs has its own unique fluorescent spectrum; 
thus there are four possible fluorescent emission spectra. The emissions captured by the 
camera are converted to a readable form called an electropherogram, from which the 
sequence of the DNA of interest can then be determined. Thus, the electropherogram 
(also known as a trace) is a graphical representation of data received from a sequencing 
machine (Soper et al., 2003)

Forensically informative nucleotide sequencing 
Forensically informative nucleotide sequencing (FINS) is a method that combines 
DNA sequencing and phylogenetic analysis. It is used to identify samples based on 
informative nucleotide sequences. The sequence with the lowest genetic distance, or 
number of nucleotide substitutions, from the target amplicon represents the species 
group to which the original sample belongs (Bartlett and Davidson, 1992). Since FINS 
is based on nucleotide‑sequence substitutions, it is important to select a fragment that 
exhibits high interspecies variability but low intraspecies variability in order to avoid 
ambiguities in the determination of species (Rasmussen and Morrissey, 2008). FINS 
represents a reliable chance to assess the nature of seafood products and to verify 
the information reported on the label. To date, numerous studies selecting different 
genetic markers have applied this technique to fish‑species identification (Blanco et al., 
2008; Espiñeira et al., 2009; Vinas and Tudela, 2009; Lago et al., 2011; Armani et al., 
2012; Lago et al., 2012; Chen et al., 2012; Huang et al., 2014; Santaclara et al., 2014; 
Armani et al., 2015a; Espiñeira and Vieites, 2015; Velasco et al., 2016; Galal‑Khallaf, 
et  al., 2017; Acutis et  al., 2019; Sivaraman et  al., 2019; Kim and Kang, 2023), to 
cephalopods (Chapela et al., 2002; Santaclara et al., 2007, Wen et al., 2017) and to other 
unconventional seafood products (Wen et al., 2010; Armani et al., 2013).

DNA barcoding
In this method, after DNA extraction, specific DNA regions (barcodes) are amplified 
by PCR (using universal primers), sequenced and compared with a database of 
reference sequences (Hellberg and Morrissey, 2011). Originally, Hebert et  al. (2003) 
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proposed a ~650‑bp portion of the COI gene as a barcode for all living organisms. 
Despite some recognized limitations (Moritz and Cicero, 2004; Rennstam Rubbmark 
et al., 2018; Tinacci et al., 2018a), the COI barcode has so far succeeded in providing 
species‑level resolution across diverse groups of insects, birds, fishes and primates and 
has also demonstrated the ability to differentiate species in other compartments of life, 
including protists and fungi (Hanner and Gregory, 2007).

DNA barcoding has been especially used for fish and seafood authentication 
(Handy et al., 2011; Hellberg and Morrissey, 2011; Nicolè et al., 2012; Wallace et al., 
2012; Nehal et al., 2021; Fernandes et al., 2021; Giusti et al., 2023a). In some cases, the 
processing and preservation methods used with seafood products are not conducive to 
DNA barcoding with the full‑length target‑gene region. Thus, it is often appropriate 
resort to the use of a shorter region, known as “mini DNA barcodes” (Meusnier 
et  al., 2008; Hajibabaei and McKenna, 2012; Horreo et  al., 2013; Sarri et  al., 2014; 
Shokralla et  al., 2015; Armani  et  al., 2015b; Mitchell and Hellberg, 2016; Günther 
et  al., 2017). Most seafood authentication studies have relied on the DNA database 
GenBank as a source of sequence information. GenBank is an expansive collection 
of all publicly available DNA sequences for genes in a multitude of species. It is 
produced by the National Center for Biotechnology Information and can be accessed 
at their website (http://www.ncbi.nlm.nih.gov). Moreover, the Barcode of Life Data 
Systems ‑ BOLD (http://www.boldsystems.org/) has gained worldwide popularity 
with the development and success of DNA barcoding, based on the use of the COI 
gene as a target region for species identification and discrimination (Hebert et  al., 
2003; Ratnasingham and Hebert, 2007). Although these databases are freely accessible 
and provide sequence information for many species, they have been criticized for 
their susceptibility to misidentification of species or population, missing information 
and inconsistent terminology (Rasmussen and Morrissey, 2008; Giusti et  al., 2019; 
Verrez‑Bagnis  et  al., 2019). Since the taxonomic accuracy within publicly available 
genetic databases represents a key factor for the reliability of the results, targeted 
preliminary analysis concerning the database reliability or the ex‑novo building of 
in‑house reference databases is recommended (Giusti et al., 2019).

7.1.2.2 	 Methods not requiring DNA sequencing
Singleplex and multiplex PCR 
Singleplex PCR is used to detect a single‑target sequence of DNA thanks to the use 
of species‑specific primers designed on single‑base polymorphisms. Such primers 
generate a fragment, visualized by agarose gel electrophoresis, only in the presence of 
DNA from a given species. Multiplex PCR is a variant of singleplex PCR and permits 
the simultaneous amplification of many targets in the same reaction. Due to its rapidity 
and simplicity of execution, it is considered an alternative method particularly apt for 
screening purposes to minimize expenses and save time (Armani et al., 2014). In this 
method, DNA from target species is amplified using a combination of species‑specific 
primers, resulting in amplicon lengths that vary with species. A given species can 
be identified by the appearance of an amplicon of appropriate size throughout the 
electrophoretic run. The main challenge in setting up an efficient multiplex PCR is 
designing the primer. As mentioned previously, primers should be characterized by a 
good level of specificity. The number of regions of a certain gene that differ sufficiently 
among all the species to be able to distinguish between them is, however, limited. 
Consequently, the possibility of alternatives is also limited. As such, the higher the 
number of species, the lower the potential number of these alternatives. Therefore, 
the number of species included in the assay undoubtedly influences its effectiveness. 
This is also the case because the technique is based on a delicate equilibrium among 
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the species‑specific primers, and the presence of many pairs in the reaction increases 
the chance of obtaining unspecific primer annealing on the sample DNA as well as 
spurious amplification products and may increase the possibility of the formation 
of primer dimers (Giusti et  al., 2016). Therefore, primers with a low capability of 
heterodimerization should be chosen. If this is not possible, the number of primers in the 
reaction mix should be reduced. One option is to choose a common forward or reverse 
primer. Moreover, it is recommended that primers with very similar optimum annealing 
temperatures be used (Castigliego et al., 2015). Another fundamental step for obtaining 
a specific amplification, strictly connected with primer concentration, is the selection 
of an adequate DNA‑template concentration. In fact, if the primer‑to‑template ratio is 
too low, specific products will not accumulate exponentially, while primer dimers may 
be amplified more efficiently than the desired target. Additionally, Taq polymerase, 
dNTPs and MgCl2 concentration should be appropriately evaluated, as well as the 
cycling condition (Giusti et al., 2016). Appropriate controls should also be included 
to preclude the possibility of false positive or negative results. (The lack of amplified 
fragment on the gel may be due to technical problems rather than to the absence of 
the target DNA [Teletchea, 2009]). Several studies applying a multiplex PCR assay for 
seafood detection have been reported. Among the main seafood targets are groupers 
(Trotta et al., 2005), tunas and mackerels (Lin and Hwang, 2008; Catanese et al., 2010; 
Kim et al., 2021; Lee et al., 2022), cods and haddocks, anglerfish (Castigliego et al., 
2015), salmon and trouts (Rassmussen et al., 2010), small pelagics (Armani et al., 2012), 
gemfish (Rexea solandri) (Giusti et al., 2016), pufferfish (Sangthong et al., 2014; Dong 
et al., 2019; Nan et al., 2021), sciaenids (Barbosa et al., 2020) and sharks (Cardeñosa 
et al., 2017; 2018). In addition, bivalves (Marín et al., 2013), gastropods (Chan et al., 
2012), cephalopods (Lee et al., 2022), crustaceans (Suwannarat et al., 2017) and jellyfish 
(Armani et al., 2014) have also been included in studies applying a multiplex PCR assay.

Real‑time PCR and high‑resolution melting analysis
Real‑time PCR (also known as quantitative PCR, real‑time quantitative PCR, or 
qPCR) is a method of simultaneous DNA amplification and detection (Teletchea, 
2009). It is an automated process, where no post‑PCR processing is required to analyse 
the amplification output. In this way, the chances of post‑PCR contact contamination 
decrease, as it is possible to observe and analyse RT‑PCR products without removing 
them from the instrument. This is attributable to the technique’s ability to detect, at 
every cycle of the PCR, the amount of PCR product (amplicon) using fluorescence 
(Salihah et  al., 2016). A fluorescent reporter molecule is included in the assay mix 
and monitored with an optical thermocycler that provides fluorescent excitation and 
quantification of the fluorescent emission. The fluorophores may be covalently linked 
to an oligonucleotide to form a labelled primer or probe or may be free molecules 
that bind to double‑stranded DNA. Many different designs are possible, the common 
feature being that they must exhibit a change in fluorescence during PCR so that 
product accumulation can be monitored. An RT‑PCR read‑out is given as the number 
of PCR cycles (“cycle threshold” Ct) necessary to achieve a given level of fluorescence. 
The most popular real‑time PCR assay, known as the TaqMan approach, is based on 
the hybridization of a dual‑labelled probe to the PCR product and the development of 
a signal by loss of fluorescence quenching as PCR degrades the probe (Ponchel et al., 
2003). This approach has been used to authenticate several seafood species: cod and 
hake (Taylor et  al., 2002), tuna and mackerel (Lopez and Pardo, 2005; Prado et  al., 
2013; Velasco et al., 2013), flatfish (Herrero et al., 2012), grouper (Chen et al., 2018), 
cyprinids (Bajzik et al., 2012), smelt (Baerwald et al., 2011), puffer fish (Luekasemsuk 
et  al., 2015) and ling (Molva molva) (Taboada et  al., 2017), as well as cephalopods 
(Velasco et  al., 2020) and bivalves (Klapper and Schröder, 2021). Another common 
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approach is based on the binding of the fluorescent dye SYBR‑Green I into the PCR 
product (PE Applied Biosystems, Warrington, UK) (Castigliego et al., 2015; Chuang 
et al., 2012). High‑resolution melt analysis (HRMA) is the quantitative analysis of the 
melt curves of product DNA fragments following PCR amplification. High‑resolution 
melt analysis requires a real‑time PCR‑detection system with excellent thermal 
stability and sensitivity, and HRMA‑dedicated software. The combination of improved 
quantitative PCR instrumentation and saturating DNA‑binding dyes has permitted the 
identification of small variations in nucleic‑acid sequences by the controlled melting 
of double‑stranded PCR amplicons (Garritano et al., 2009). HRMA has been used to 
authenticate cods (Fernandes et al., 2017; Tomßs et al., 2017; Shi et al., 2020), cyprinids 
(Behrens‑Chapuis et al., 2018), sharks (Cardeñosa et al., 2017), eels (Noh et al., 2018), 
salmon and trout (Xu et  al., 2021), and catfish (Buddhachat et  al., 2021), as well as 
bivalves (Jin et al., 2015; Jilberto et al., 2017; Del Rio‑Lavín et al., 2021) and crustaceans 
(Fernandes et al., 2017b; Mondal and Mandal, 2020; Sharma et al., 2020).

Restriction fragment length polymorphism 
Restriction fragment length polymorphism, or RFLP, is a commonly employed tool 
to check the small but specific variations in a sequence of double‑stranded DNA. 
It is based on the specificity of restriction endonucleases, which recognize a set of 
nucleotides called a restriction site and cleave the DNA at those sites. A specific RFLP 
pattern emerges during the electrophoretic separation of digested DNA, producing 
variable lengths of cleavage fragments that are characteristic of a sequence of DNA. 
Most of the studies applying this technique to fish and seafood authentication were 
published around one or two decades ago (Wolf et al., 1999, 2000; Cocolin et al., 2000; 
Hold et al., 2001; Quinteiro et al., 2001; Sanjuan et al., 2002; Comesana et al., 2003; 
Aranishi et  al., 2005; Khamnamtong et  al., 2005; Akasaki et  al., 2006; Hsieh et  al., 
2007; Di Finizio et al., 2007; Santaclara et al., 2007; Espiñeira et al., 2008; Pascoal et al., 
2008; Rea et al., 2009; Hsieh et al., 2010; Wen et al., 2010; Fernández‑Tajes et al., 2011; 
Armani et al., 2012; Chen et al., 2012; Pascoal et al., 2012; Chen et al., 2014; Chairi and 
Rebordinos, 2014; Pappalardo and Ferrito, 2015; Sumathi et al., 2015; Ferrito et al., 
2016). In the more recent studies, RFLP has been applied to the authentication of 
snappers (Sivaraman et al., 2018), groupers (Anjali et al., 2019) and tunas (Mata et al., 
2020; Yao et al., 2020), as well as bivalves (Razak et al., 2019; Giusti et al., 2022) and 
other invertebrates (Zeng et al., 2018). The use of RFLP has lessened recently in favour 
of other techniques.

Microarrays
PCR products can be analysed by hybridization to species‑specific oligonucleotide 
probes arrayed on DNA microarrays, which can contain from several thousand 
to millions of DNA probes attached like small spots on the array surface. Upon 
hybridization of labelled PCR products, species can be identified directly, based on 
the pattern of positive probes. Seafood authentication using DNA microarrays is still a 
niche application (Verrez‑Bagnis et al., 2019), and only a few studies targeting marine 
species have been published so far (Kochzius et al., 2010; Handy et al., 2014; Kappel 
et al., 2020).

Isothermal amplification 
Loop‑mediated isothermal amplification (LAMP) is a sensitive strand‑displacement 
technique (Notomi, 2000). This method amplifies target DNA from a few to 
109 copies in less than an hour under isothermal conditions. It is an offshoot 
of basic strand‑displacement techniques, which have been described thoroughly  
(Notomi, 2000). Briefly, four highly specific primers are constructed from the target 
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DNA. One set of primers anneals to the target region – one after the other, on the 
same strand, and the primer that anneals at the later stage displaces the strand formed 
by the first primer with the help of Bst DNA polymerase. The Bst polymerase has 
a strand‑displacement activity. This takes place on both strands, and the primers are 
designed such that loops are formed. The reaction is carried out under isothermal 
conditions as denaturation of the strand takes place by strand displacement. The 
reactions produce a series of stem‑loop DNAs of various lengths. The four primers 
hybridize against six distinct sequences in the target DNA, making it highly specific 
(Savan et al., 2005). Colorimetric LAMP, typically relying on the naked‑eye evaluation 
of colour change, which is achieved through the use of different indicators such as pH, 
metal binding or DNA binding dyes, is the most popular LAMP application (Papadakis 
et al., 2022). The use of LAMP has taken hold in recent years for the authentication 
of cod (Wang et al., 2019; Hanyue et al., 2023), tuna and tuna‑like fish (Xiong et al., 
2021; Ali et al., 2022; Xu et al., 2022), salmon and trout (Xiong et al., 2020; Xiong et al., 
2021; Li et al., 2022) and flatfish (Deconinck et al., 2023; Wax et al., 2023), as well as 
cephalopods (Ye et al., 2017) and crustaceans (Benjakul and Saetang, 2022). 

7.1.3.	 Innovative DNA‑based methods
7.1.3.1	 Methods based on high‑throughput sequencing
Introduction to Next Generation Sequencing (NGS) Technologies
Next‑generation sequencing (NGS) technologies are high‑throughput methods able 
to simultaneously sequence all the DNA molecules, including those present in trace 
amounts (Goodwin et al., 2016). Unlike Sanger sequencing, where a single amplicon 
from a single species is amplified and a unique sequence is obtained, in this case, 
hypothetically, 100 percent of the DNA contained in a sample can be amplified and 
sequenced each time (Morey et al., 2013). NGS technologies are grouped into second 
(2nd GS), third (3rd GS) and fourth generation (4th GS) sequencing, though there is no 
consensus on this classification (Fernandes et al., 2021). The 2nd GS technologies rely 
on the cyclic parallel reading of clonally amplified and spatially separated amplicons 
(Mardis, 2008). A number of 2nd GS technology platforms were developed. Illumina 
is the current market leader. Currently, it has four benchtop sequencers (iSeq, MiniSeq, 
MiSeq and NextSeq) and two production‑scale platforms (HiSeq and NovaSeq). 
Other well‑known 2nd GS platforms include Ion Torrent by Thermo Fisher Scientific, 
Pyrosequencing by Roche 454 and SOLiD by Life Technologies. One of the main 
weaknesses that have been recognized in 2nd GS technologies is that the maximum 
read length that can be obtained is not as long as that of Sanger sequencing (Morey 
et al., 2013). With respect to the 2nd GS, the Illumina platform produces a maximum 
of 2  ×  300 bases for paired‑end reads, available only on the MiSeq sequencer or, at 
production‑scale level, on the Novaseq sequencer (Haynes et al., 2019). Ion Torrent 
reached a maximum read length of 600 bp with Ion GeneStudio S5 sequencers. The 
3rd GS and 4th GS technologies have gone beyond this limit, and are able to routinely 
generate reads in excess of 10  kb (Pollard et  al., 2018). The 3rd GS commercially 
available platforms are Helicos BioSciences and Pacific BioSciences, while the 4th GS 
is uniquely represented by Oxford Nanopore Technologies, where single molecules 
of DNA can be identified by passing them through a tiny channel with the potential 
to produce very long reads (Deamer et  al., 2016; Pervez et  al., 2022). The first 
commercially available instrument, Oxford Nanopore MinION technology, produced 
by Oxford Nanopore Technologies, heralds the promise of a USB‑sized, portable 
DNA sequencer (Pollard et al., 2018). However, a major drawback is the high raw‑read 
error, which can range from 10 percent to 22 percent (Baloğlu et  al., 2021). Indeed, 
nanopore sequencing is still limited by low single‑passage de novo sequencing accuracy, 
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compared with that of other established sequencing platforms (Ku and Roukos, 2013; 
Noakes et al., 2019). Different from other fields of investigation, such as the analysis 
of biodiversity in environmental samples or trophic interactions, where this technique 
is widely used (Ruppert et al., 2019), its application in foodstuffs is still limited, mainly 
due to a factual lack of method standardization (Haynes et  al., 2019; Giusti et  al., 
2023b; Giusti et al., 2024;). Two main applications are available for NGS technologies: 
metabarcoding and shotgun sequencing. Basically, they are both articulated in: 1) library 
preparation, 2) sequencing and 3) final data analysis using bioinformatic pipelines  
(Staats et al., 2016). A pipeline is generated using a collection of software and algorithms 
with the aim of producing an accurate features table with potential taxa contained in a 
sample (Hakimzadeh et al., 2023).

Metabarcoding
The combination of NGS with DNA barcoding has been termed metabarcoding. It is 
a method of targeted NGS that analyses genetic variation in specific genomic regions. 
The method uses PCR to create sequences of DNA called amplicons. Multiplexing 
– barcoding samples so that they can be mixed into pools – allows multiple samples 
to be sequenced on a single sequencing run. Before multiplexing, individual samples 
used for amplicon sequencing must be transformed into libraries by adding adapters 
and enriching target regions by PCR amplification. The adapters allow the formation 
of indexed amplicons and enable the amplicons to adhere to the sequencing flow 
cell. To date, metabarcoding has been applied to the authentication of canned tuna 
(Kappel et al., 2020); salmon (Wang et al., 2021); complex seafood products such as 
fish burgers, cakes and surimi (Carvalho et al., 2017; Giusti et al., 2017; Piredda et al., 
2022; Mottola et al., 2022; Giusti et al., 2023b); and sea cucumber (Wang et al., 2021). 
Recently, a systematic review was published on the application of metabarcoding to the 
authentication of food of animal origin (Giusti et al., 2024).

Shotgun sequencing 
This method involves randomly breaking up the genome into small DNA fragments 
that are sequenced individually. A computer program looks for overlaps in the DNA 
sequences, using them to reassemble the fragments in their correct order to reconstitute 
the genome. Metabarcoding has the potential to determine the presence of different 
species in a mixture, but this approach often falls short in estimating the correct relative 
abundance of individual species in the mixture (Hellberg et  al., 2017; Lo and Shaw, 
2018; Shokralla et al., 2015; Xing et al., 2019). In fact, the PCR step in the barcoding 
approach is prone to bias due to its dependency on degenerate primers, which assume 
equal amplification of the target gene from all species. Furthermore, the common use of 
mitochondrial target genes, such as COI, though it increases the sensitivity, also increases 
the possibility of bias due to fluctuating levels of mitochondrial DNA per cell, tissue 
or age. Thus, using shotgun sequencing and avoiding the PCR step altogether would 
be beneficial for accurately quantifying the biological content of mixed‑food products. 
Approaches using shotgun‑metagenome sequencing have successfully quantified the 
content of mixed‑food products, demonstrating the potential for this technique in food 
and feed control (Haiminen et al., 2019; Kobus et al., 2020). However, this approach is 
currently poorly applied (Varunjikar et al., 2022). 

Table 1 provides a comparison of various protein‑based, traditional DNA‑based 
and innovative DNA‑based analytical methods for identifying and differentiating fish 
species. 



42 Food fraud in the fisheries and aquaculture sector

TABLE 1
 Analytical methods for fish‑species identification and differentiation

 Category of 
an alytical 
methods

Analytical technique 
group (specific analytical 

technique)
Benefits Limitations Sources

Protein‑based 
methods

Electrophoretic (Isoelectric 
focusing [IEF])

Simple, accurate and 
inexpensive

IEF results in the proteins 
being confined to small 
zones, leading to enhanced 
resolution and sensitivity

Not suitable for heat‑treated 
foodstuffs

Tokur and 
Korkmaz, 2023

Verrez‑Bagnis 
et al., 2017

Protein‑based 
methods

Electrophoretic 
(2‑dimensional 
electrophoresis [2‑DE])

Can be successfully applied 
to fresh and heat‑treated 
foodstuffs

Resulting protein profiles 
include several bands, making 
their interpretation sometimes 
challenging

Requires skilled operators and 
appropriate equipment

Tokur and 
Korkmaz (2023)

Tokur and 
Korkmaz(2023) 

Protein‑based 
methods

Immunological 
(Enzyme‑linked 
immunosorbent assay 
[ELISA]) 

Useful in heat‑sterilized 
products

Difficulty in selecting 
antibodies with a high degree 
of specificity and incidence 
of cross‑reactions with 
non‑target species, and the 
thermostability of antigenic 
determinants, which limits the 
applicability of such methods 
to the analysis of processed 
products 

Civera et al., 1996

Lago et al., 2014; 
Teletchea et al., 
2005

Ruethers et al., 
2020

Protein‑based 
methods

Chromatographic 
(High‑performance liquid 
chromatography [HPLC])

Allows the obtention of 
species‑specific protein 
chromatographic 
profiles, the quantitative 
estimation of the profiles 
returned by the analysis, 
making the method also 
applicable to the analysis 
of composite products and 
mixed‑seafood products 

Protein degradation 
occurring during sample 
preparation preliminary to the 
chromatographic test

Lago et al., 2014

Fiorino et al., 
2018

Protein‑based 
methods

Spectrometric 
(Matrix‑assisted laser 
desorption/ionization‑time 
of flight [MALDI‑TOF] 
mass spectrometry) 

Generally associated with 
preliminary selection 
protocols in 2‑DE 
electrophoresis or HPLC

Not a stand‑alone technique; 
must be coupled with 
preliminary chromatographic 
or electrophoretic methods for 
selection of peptide markers 
for identification analysis

Rodríguez and 
Ortea, 2017

Verrez‑Bagnis 
et al., 2017

Zambonin, 2021

Carrera et al., 
2013

Protein‑based 
methods

Spectrometric 
(Electrospray‑ion trap 
[ESI‑IT] mass spectrometry) 

 Not a stand‑alone technique; 
must be coupled with 
preliminary chromatographic 
or electrophoretic methods for 
selection of peptide markers 
for identification analysis

Carrera et al., 
2013 

Rodríguez and 
Ortea, 2017 

Verrez‑Bagnis 
et al., 2017 

Zambonin, 2021 

Traditional 
DNA‑based 
methods

Based on DNA sequence 
(Sanger sequencing 
[first‑generation 
sequencing])

Fast and cost effective 
– the gold standard for 
accurate detection of single 
nucleotide

Limited throughput;

may not detect mosaicism.

Can require larger amount 
of input DNA than massively 
parallel sequencing 

Sanger et al., 
1977

Bhérer et al., 2024

Traditional 
DNA‑based 
methods

Based on DNA sequence 
(Forensically informative 
nucleotide sequencing 
[FINS])

Accurate method of species 
identification of a specimen 
when this is not possible by 
conventional means

 Rasmussen and 
Morrissey, 2008

Bartlett, 1992

Traditional 
DNA‑based 
methods

Based on DNA sequence 
(DNA barcoding)

Testable and reproducible 
system as a link is 
maintained between any 
barcode and a voucher 
specimen

In most cases, faster 
and cheaper than 
traditional morphological 
identifications for massive 
routine identifications

Potential false negatives can 
occur, i.e., different DNA 
barcodes between individuals 
belonging to the same species 
due to ancestral polymorphism 
or genetic introgression

Hebert et al., 
2003

Ratnasingham 
and Hebert, 2007
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TABLE 1
 Analytical methods for fish‑species identification and differentiation (continued)

 Category of 
an alytical 
methods

Analytical technique 
group (specific analytical 

technique)
Benefits Limitations Sources

Traditional 
DNA‑based 
methods

Do not require DNA 
sequence (Singleplex PCR)

Due to its rapidity and 
simplicity of execution, 
considered an alternative 
method, particularly for 
screening purposes to 
minimize expenses and save 
time

Challenge in designing the 
primer to set up efficient 
multiplex PCR 

Primers should have a good 
level of specificity. There 
are a limited number of 
regions of a certain gene 
that differ sufficiently among 
all the species for purposes 
of distinguishing between 
them. Thus, alternatives are 
limited, and the higher the 
number of species, the lower 
the potential number of 
alternatives.

Armani et al., 
2014

Giusti et al., 2016

Traditional 
DNA‑based 
methods

Don’t require DNA 
sequence (Multiplex PCR)

Variant of Singleplex PCR 
permitting simultaneous 
amplification of many 
targets in the same reaction

Rapidity and simplicity 
of execution make it an 
option particularly for 
screening purposes to 
minimize expenses and save 
time.

Challenge in designing the 
primer to set up efficient 
multiplex PCR. Primers 
should have a good level of 
specificity. There are a limited 
number of regions of a certain 
gene that differ sufficiently 
among all the species for the 
purpose of distinguishing 
between them.

Alternatives are also limited 
– the higher the number 
of species, the lower 
the potential number of 
alternatives.

Armani et al., 
2014

Giusti et al., 2016

Traditional 
DNA‑based 
methods

Don’t require DNA 
sequence (Real‑time PCR 
[qPCR])

Provide fast and 
high‑throughput detection 
and quantification of target 
DNA sequences in different 
matrices

May not be effective for 
detecting unknown or highly 
variable sequences without 
prior knowledge of the target 
DNA

Salihah et al., 
2016

Teletchea, 2009

Traditional 
DNA‑based 
methods

Don’t require DNA 
sequence (High‑resolution 
melting analysis)

Fast, simple procedure 
with high reproducibility 
and capability of analysing 
multiple CpG sites within a 
region

Different heterozygotes may 
produce melting curves so 
similar to that, although 
they clearly vary from 
homozygous variants, they are 
not differentiated from each 
other. 

Hattori and 
Ushijima, 2027

Wittwer, 2009 

Traditional 
DNA‑based 
methods

Don’t require DNA 
sequence (Restriction 
fragment length 
polymorphism [RFLP])

Fast, simple, accurate 
molecular tool for profiling 
and identifying population

Has lower discriminatory 
power and more expensive to 
run compared to RAPD

Martya et al., 
2012

Smith et al., 2002

Traditional 
DNA‑based 
methods

Don’t require DNA 
sequence [Isothermal 
Amplification (LAMP])

Significant advantage: 
it can be conducted at a 
stable temperature (e.g. 
in dry block heater or 
incubator)

Products can be detected 
much faster than in 
standard techniques, 
sometimes only requiring 
analysis with the naked eye. 

Sensitive to 
cross‑contamination

Difficult to check samples 
for the presence of reaction 
inhibitors, as requires two 
reactions – one to detect 
inhibitors and another to 
amplify the material

Soroka and 
Rymaszewska, 
2021

Innovative 
DNA‑based 
methods

Based on high‑throughput 
sequencing 
(Next‑generation 
sequencing [NGS] 
technologies)

High‑throughput, able to 
simultaneously sequence 
all the DNA molecules, 
including those present in 
trace amounts

Application in foodstuffs 
still limited, mainly due 
to factual lack of method 
standardization

Giusti et al., 2024

Haynes et al., 
2019

Innovative 
DNA‑based 
methods

Based on high‑throughput 
sequencing 
(Metabarcoding)

Allows multiple samples to 
be sequenced on a single 
sequencing run

Can determine the presence 
of different species in a 
mixture but often falls short 
in estimating correct relative 
abundance of individual 
species in the mixture

Hellberg et al., 
2017

Lo and Shaw, 
2018

Xing et al., 2019

Innovative 
DNA‑based 
methods

Based on high‑throughput 
sequencing (Shotgun 
sequencing)

Can quantify content of 
mixed‑food products, thus 
has potential for use in 
food and feed control

 Haiminen et al., 
2019

Kobus et al., 2020

Note: All the methods detect these types of food fraud: counterfeit and simulation, species substitution and mislabelling.
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7.2 	 METHODS FOR DIFFERENTIATION BETWEEN FRESH AND 
FROZEN‑THAWED FISH 

Selling frozen/thawed fish as fresh fish is one of the forms of adulteration in the 
fisheries and aquaculture sector. Fresh fish is defined as an unprocessed fish product, 
whether whole or gutted, that has not undergone any treatment to ensure preservation, 
other than chilling (for instance, in the definition of “fresh fishery products” in the 
European Regulation (EC) No  853/2004 Art.  2 Annex  I No  3.5) (EU, 2004). Fish 
is a perishable food with continuous changes at the molecular level and in chemical 
composition, due to relatively rapid postmortem processes that depend on storage 
conditions. Therefore, the freshness of fish is considered an important aspect of its 
quality (Rimbach et al., 2015). Freezing, salting, drying, smoking, soaking in acids or 
edible oil have all been used as preservation methods for fish (Ebermann and Elmadfa, 
2008). Freezing best preserves the original consistency and properties of the fish 
flesh (Rimbach et al., 2015; Qiao et al., 2022), enabling extensive international trade 
(Tülsner, 1996). Furthermore, complex supply chains increase the risk of food fraud 
(Ellefson et al, 2013; Hong et al., 2017), as fresh fish is traded at a higher price compared 
to frozen‑thawed fish (Hassoun et al., 2020a; Verrez‑Bagnis et al., 2018). The correct 
labelling of frozen‑thawed fish is regulated by countries and/or associations of states. 
(For instance, in the European Union, Article 35 of regulation (EU) No  1379/2013  
[EU, 2013] addresses this). Due to freezing, subsequent (deep‑)frozen 
storage and thawing, ice‑crystal formation and growth, recrystallization 
processes, melting and osmosis take place within fish tissue  
(Boziaris, 2014; Gökoğlu and Yerlikaya, 2015). This affects the consistency and 
chemical composition of the tissue: proteolysis (Belitz et  al., 2008; Gökoğlu and 
Yerlikaya, 2015; Sotelo et al., 1995a), protein oxidation (Baron et al., 2007; Nakazawa 
and Okazaki, 2020; Sotelo et al., 1995b), lipid oxidation (Baron et al., 2007; Pirestani 
et al., 2010), lipolysis (Baron et al., 2007), texture changes (Belitz et al., 2008; Nakazawa 
and Okazaki, 2020; Qiao et al., 2022) and drip losses (Belitz et al., 2008; Qiao et al., 
2022; Tülsner, 1996) have all been reported. In view of these postmortem changes, the 
differentiation between fresh and frozen‑thawed fish is challenging. Currently, there 
are no standardized methods to investigate this type of fraud, and due to a lack of 
studies, there are no available statistics on the incidence of frozen‑thawed fish sold 
as fresh fish. However, some analytical studies have been conducted to develop and 
investigate possible methods to differentiate between fresh fish and frozen‑thawed fish, 
demonstrating the need for analytical tools for this kind of fraud in the fisheries and 
aquaculture sector. Table 2 summarizes the findings of these studies. 



4545Analytical tools to detect food fraud in the aquatic sector

TA
B

LE
 2

 O
ve

rv
ie

w
 o

f 
p

u
b

lis
h

ed
 a

n
al

yt
ic

al
 m

et
h

o
d

s 
to

 d
if

fe
re

n
ti

at
e 

b
et

w
ee

n
 f

re
sh

 a
n

d
 f

ro
ze

n
‑t

h
aw

ed
 f

is
h

A
n

al
yt

ic
al

 m
et

h
o

d
Fi

sh
 s

p
ec

ie
s

A
sp

ec
ts

 f
o

r 
fu

rt
h

er
 r

es
ea

rc
h

R
ef

er
en

ce
C

at
eg

o
ry

M
et

h
o

d
 s

p
ec

if
ic

s

En
zy

m
at

ic

α-
g

lu
co

si
d

as
e,

 β
‑N

‑a
ce

ty
l‑

g
lu

co
sa

m
in

id
as

e
C

o
d

 (
G

ad
u

s 
m

o
rh

u
a)

, s
ai

th
e 

(G
ad

u
s 

vi
re

n
s)

, 
re

d
 f

is
h

 (
Se

b
as

te
s 

m
ar

in
u

s)
, h

ad
d

o
ck

 (
G

ad
u

s 
ae

g
le

fi
n

u
s)

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

ro
ze

n
 f

is
h

)
R

eh
b

ei
n

 e
t 

al
., 

19
78

α-
g

lu
co

si
d

as
e

C
o

d
 (

G
ad

u
s 

m
o

rh
u

a)
C

o
m

p
ar

is
o

n
 w

it
h

 o
th

er
 e

n
zy

m
es

R
eh

b
ei

n
, 1

97
9

cy
to

ch
ro

m
e 

o
xi

d
as

e
R

ai
n

b
o

w
 t

ro
u

t 
(O

n
co

rh
yn

ch
u

s 
m

yk
is

s)
A

d
d

it
io

n
al

 d
et

er
m

in
at

io
n

 o
f 

th
e 

p
ro

te
in

 c
o

n
te

n
t

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

ro
ze

n
 f

is
h

)

B
ar

b
ag

li 
an

d
 C

re
sc

en
zi

, 
19

81

β-
N

-a
ce

ty
lg

lu
co

sa
m

in
id

as
e

C
ar

p
 (

C
yp

rz
n

u
s 

ca
rp

io
),

 s
ea

‑b
re

am
 

(C
h

ry
so

p
h

ry
s 

m
aj

o
r)

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

ro
ze

n
 f

is
h

)
K

it
am

ik
ad

o
 e

t 
al

., 
19

90

ad
en

o
si

n
e 

tr
ip

h
o

sp
h

at
as

e,
 la

ct
at

e 
d

eh
yd

ro
g

en
as

e
M

ri
g

al
 (

C
ir

rh
in

u
s 

m
ri

g
al

a)
, m

u
lle

t 
(L

iz
a 

p
ar

si
a)

, p
ea

rl
sp

o
t 

(E
tr

o
p

lu
s 

su
ra

te
n

si
s)

, 
m

ilk
fi

sh
 (

C
h

an
o

s 
ch

an
o

s)
, t

ila
p

ia
 

(O
re

o
ch

ro
m

is
 m

o
ss

am
b

ic
u

s)

A
cc

o
m

p
an

yi
n

g
 d

et
er

m
in

at
io

n
 o

f 
α‑

am
in

o
 

n
it

ro
g

en
, t

o
ta

l v
o

la
ti

le
 n

it
ro

g
en

, f
re

e 
fa

tt
y 

ac
id

s,
 

th
io

b
ar

b
it

u
ri

c 
ac

id
 v

al
u

e

N
am

b
u

d
ir

i a
n

d
 

G
o

p
ak

u
m

ar
, 1

99
2

Β‑
h

yd
ro

xy
ac

yl
‑c

o
en

zy
m

e 
A

‑d
eh

yd
ro

g
en

as
e

R
ai

n
b

o
w

 t
ro

u
t 

(O
n

co
rh

yn
ch

u
s 

m
yk

is
s)

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

re
sh

 f
is

h
)

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

te
m

p
er

at
u

re
 (

fr
es

h
 f

is
h

)

A
d

d
it

io
n

al
 In

ve
st

ig
at

io
n

In
ve

st
ig

at
io

n
(P

ro
ca

m
b

ar
u

s 
cl

ar
ki

i)

H
o

z 
et

 a
l.,

 1
99

2

Α
‑g

lu
co

si
d

as
e,

 β
‑N

‑g
lu

co
sa

m
in

id
as

e,
 a

ci
d

 
p

h
o

sp
h

at
as

eS
R

ai
n

b
o

w
 t

ro
u

t 
(O

n
co

rh
yn

ch
u

s 
m

yk
is

s)
A

d
d

it
io

n
al

 d
et

er
m

in
at

io
n

 o
f 

p
ro

te
in

 c
o

n
te

n
t

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

re
sh

 a
n

d
 

fr
o

ze
n

‑t
h

aw
ed

 f
is

h
)

In
fl

u
en

ce
 o

f 
fr

ee
zi

n
g

 p
ro

ce
d

u
re

En
zy

m
e 

ac
ti

vi
ty

 d
et

er
m

in
at

io
n

 in
 p

re
ss

 ju
ic

e 
o

r 
in

 
h

o
m

o
g

en
iz

ed
 t

is
su

e

N
ils

so
n

 a
n

d
 E

ks
tr

an
d

, 
19

93

Β‑
h

yd
ro

xy
ac

yl
‑c

o
en

zy
m

e 
A

‑d
eh

yd
ro

g
en

as
e

M
ac

ke
re

l (
Sc

o
m

b
er

 s
co

m
b

ru
s)

, t
u

n
a 

(T
h

u
n

n
u

s 
al

al
o

n
g

a)
, s

ea
‑b

re
am

 (
Pa

g
el

lu
s 

ce
n

tr
o

d
o

n
tu

s)
, s

o
le

 (
So

le
a 

so
le

a)
, h

ak
e 

(M
er

lu
cc

iu
s 

m
er

lu
cc

iu
s)

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

re
sh

 a
n

d
 

fr
o

ze
n

‑t
h

aw
ed

 f
is

h
)

In
fl

u
en

ce
 o

f 
fr

ee
zi

n
g

 t
em

p
er

at
u

re

In
fl

u
en

ce
 o

f 
fi

sh
 s

iz
e 

(h
ak

e)
 

Pa
vl

o
v 

et
 a

l.,
 1

99
4



46 Food fraud in the fisheries and aquaculture sector

TA
B

LE
 2

 O
ve

rv
ie

w
 o

f 
p

u
b

lis
h

ed
 a

n
al

yt
ic

al
 m

et
h

o
d

s 
to

 d
if

fe
re

n
ti

at
e 

b
et

w
ee

n
 f

re
sh

 a
n

d
 f

ro
ze

n
‑t

h
aw

ed
 f

is
h

 (
co

n
ti

n
u

ed
)

A
n

al
yt

ic
al

 m
et

h
o

d
Fi

sh
 s

p
ec

ie
s

A
sp

ec
ts

 f
o

r 
fu

rt
h

er
 r

es
ea

rc
h

R
ef

er
en

ce
C

at
eg

o
ry

M
et

h
o

d
 s

p
ec

if
ic

s

Β‑
h

yd
ro

xy
ac

yl
‑c

o
en

zy
m

e 
A

‑d
eh

yd
ro

g
en

as
e

So
le

 (
So

le
a 

so
le

a)
, s

ea
‑b

re
am

 (
Pa

g
el

lu
s 

ce
n

tr
o

d
o

n
tu

s)
, h

ak
e 

(M
er

lu
cc

iu
s 

m
er

lu
cc

iu
s)

, 
g

ilt
 h

ea
d

ed
 b

re
am

 (
Sp

ar
u

s 
au

ra
ta

),
 s

ea
b

as
s 

(D
ic

en
tr

ar
ch

u
s 

la
b

ra
x)

, s
al

m
o

n
 (

Sa
lm

o
 s

al
ar

)

In
fl

u
en

ce
 o

f 
fr

ee
zi

n
g

 t
em

p
er

at
u

re

D
o

u
b

le
‑f

ro
ze

n
 f

is
h

Fe
rn

án
d

ez
 e

t 
al

., 
19

99

α‑
g

lu
co

si
d

as
e

Sa
lm

o
n

 (
Sa

lm
o

 s
al

ar
, O

n
co

rh
yn

ch
u

s 
ke

ta
)

A
d

d
it

io
n

al
 In

ve
st

ig
at

io
n

 o
f 

sm
o

ke
d

 p
ro

d
u

ct
s

R
eh

b
ei

n
 a

n
d

 Ç
ak

li,
 2

00
0

β‑
h

yd
ro

xy
ac

yl
‑c

o
en

zy
m

e 
A

‑d
eh

yd
ro

g
en

as
e,

 
α‑

g
lu

co
si

d
as

e
Pl

ai
ce

 (
Pl

eu
ro

n
ec

te
s 

p
la

te
ss

a)
, w

h
it

in
g

 
(M

er
la

n
g

u
s 

m
er

la
n

g
u

s)
, m

ac
ke

re
l (

Sc
o

m
b

er
 

sc
o

m
b

ru
s)

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

re
sh

 a
n

d
 f

ro
ze

n
 f

is
h

)

C
o

m
p

ar
is

o
n

 w
it

h
 t

o
rr

ym
et

er
 m

ea
su

re
m

en
ts

 a
n

d
 a

 
p

h
ys

io
lo

g
ic

al
 m

et
h

o
d

 (
ey

e 
le

n
s)

D
u

fl
o

s 
et

 a
l.,

 2
00

2

α‑
g

lu
co

si
d

as
e,

 β
‑g

al
ac

to
si

d
as

e,
 

β‑
N

‑a
ce

ty
lg

lu
co

sa
m

id
as

e
A

n
ch

o
vy

 (
En

g
ra

u
lis

 e
n

g
ra

si
co

lu
s)

, s
ar

d
in

es
 

(S
ar

d
in

a 
p

ilc
h

ar
d

u
s)

, h
o

rs
e 

m
ac

ke
re

l 
(T

ra
ch

u
ru

s 
tr

ac
h

u
ru

s)
, c

h
u

b
 m

ac
ke

re
l 

(S
co

m
b

er
 ja

p
o

n
ic

u
s 

co
lia

s)

A
d

d
it

io
n

al
 s

en
so

ry
 a

n
al

ys
is

 o
f 

q
u

al
it

y 
in

d
ex

, 
co

lo
u

r 
m

ea
su

re
m

en
ts

, e
xa

m
in

at
io

n
 o

f 
th

e 
m

ed
u

lla
 o

f 
th

e 
cr

ys
ta

lli
n

e 
le

n
s

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

ro
ze

n
 f

is
h

)

In
fl

u
en

ce
 o

f 
fi

sh
 s

p
ec

ie
s

A
lb

er
io

 e
t 

al
., 

20
14

la
ct

at
e 

d
eh

yd
ro

g
en

as
e

Se
a‑

b
re

am
 (

Sp
ar

u
s 

au
ra

ta
)

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

re
sh

 f
is

h
)

C
o

m
p

ar
is

o
n

 w
it

h
 α

‑g
lu

co
si

d
as

e

D
io

p
 e

t 
al

., 
20

16

Β‑
h

yd
ro

xy
ac

yl
‑c

o
en

zy
m

e 
A

‑d
eh

yd
ro

g
en

as
e

Y
el

lo
w

fi
n

 t
u

n
a 

(T
h

u
n

n
u

s 
al

b
ac

ar
es

)
In

fl
u

en
ce

 o
f 

st
o

ra
g

e 
ti

m
e 

(f
ro

ze
n

 f
is

h
)

B
er

n
ar

d
i e

t 
al

., 
20

19

α‑
g

lu
co

si
d

as
e

Se
ab

as
s 

(D
ic

en
tr

ar
ch

u
s 

la
b

ra
x)

C
o

m
p

ar
is

o
n

 w
it

h
 o

th
er

 m
et

h
o

d
s 

(d
et

er
m

in
at

io
n

 
o

f 
p

ro
te

in
 c

o
n

te
n

t,
 f

re
e 

ca
lc

iu
m

 c
o

n
ce

n
tr

at
io

n
, 

n
u

cl
eo

ti
d

es
 a

n
d

 r
el

at
ed

 c
o

m
p

o
u

n
d

s 
co

n
ce

n
tr

at
io

n
)

M
ar

la
rd

 e
t 

al
., 

20
19

M
o

rp
h

o
lo

g
ic

al

H
is

to
lo

g
ic

al
G

ilt
h

ea
d

 (
Sp

ar
u

s 
au

ra
tu

s)
, r

ed
 m

u
lle

t 
(M

u
llu

s 
b

ar
b

at
u

s)
, s

w
o

rd
fi

sh
 (

X
ip

h
ia

s 
g

la
d

iu
s)

B
o

zz
et

ta
 e

t 
al

., 
20

12

H
is

to
lo

g
ic

al
Eu

ro
p

ea
n

 h
ak

e 
(M

er
lu

cc
iu

s 
m

er
lu

cc
iu

s)
Ti

n
ac

ci
 e

t 
al

., 
20

18
a

H
is

to
lo

g
ic

al
Tr

o
u

t,
 a

m
o

n
g

 o
th

er
s

Ex
am

in
at

io
n

 o
f 

d
if

fe
re

n
t 

m
ea

t 
sa

m
p

le
s

O
rl

o
va

 e
t 

al
., 

20
20

H
is

to
lo

g
ic

al
Sm

o
ke

d
 s

al
m

o
n

 (
Sa

lm
o

 s
al

ar
)

Si
g

u
rg

is
la

d
o

tt
ir

 e
t 

al
., 

20
00

H
is

to
lo

g
ic

al
Sm

o
ke

d
 s

al
m

o
n

 (
Sa

lm
o

 s
al

ar
)

Pe
zz

o
la

to
 e

t 
al

., 
20

20

H
is

to
lo

g
ic

al
B

la
ck

 r
o

ck
fi

sh
 (

Se
b

as
te

s 
m

el
an

o
p

s)
, 

st
ee

lh
ea

d
 t

ro
u

t 
(O

n
co

rh
yn

ch
u

s 
m

yk
is

s)
K

ag
an

 a
n

d
 V

in
er

, 2
02

2

H
is

to
lo

g
ic

al
M

ar
in

at
ed

 a
n

ch
o

vy
 f

ill
et

s 
(E

n
g

ra
u

lis
 

en
cr

as
ic

o
lu

s)
M

ei
st

ro
 e

t 
al

., 
20

16

Ph
ys

io
lo

g
ic

al
 (

ey
e 

le
n

s,
 t

ra
n

sp
ar

en
t 

o
r 

o
p

aq
u

e)
Pl

ai
ce

 (
Pl

eu
ro

n
ec

te
s 

p
la

te
ss

a)
, w

h
it

in
g

 
(M

er
la

n
g

u
s 

m
er

la
n

g
u

s)
, m

ac
ke

re
l (

Sc
o

m
b

er
 

sc
o

m
b

ru
s)

O
n

ly
 a

p
p

lic
ab

le
 f

o
r 

w
h

it
in

g
 a

n
d

 m
ac

ke
re

l, 
n

o
t 

fo
r 

p
la

ic
e

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

re
sh

 a
n

d
 f

ro
ze

n
 f

is
h

)

C
o

m
p

ar
is

o
n

 w
it

h
 e

n
zy

m
at

ic
 e

xa
m

in
at

io
n

s 
an

d
 

to
rr

ym
et

er
 m

ea
su

re
m

en
ts

D
u

fl
o

s 
et

 a
l.,

 2
00

2



4747Analytical tools to detect food fraud in the aquatic sector

TA
B

LE
 2

 O
ve

rv
ie

w
 o

f 
p

u
b

lis
h

ed
 a

n
al

yt
ic

al
 m

et
h

o
d

s 
to

 d
if

fe
re

n
ti

at
e 

b
et

w
ee

n
 f

re
sh

 a
n

d
 f

ro
ze

n
‑t

h
aw

ed
 f

is
h

 (
co

n
ti

n
u

ed
)

A
n

al
yt

ic
al

 m
et

h
o

d
Fi

sh
 s

p
ec

ie
s

A
sp

ec
ts

 f
o

r 
fu

rt
h

er
 r

es
ea

rc
h

R
ef

er
en

ce
C

at
eg

o
ry

M
et

h
o

d
 s

p
ec

if
ic

s

Sp
ec

tr
o

sc
o

p
y

R
am

an
 s

p
ec

tr
o

sc
o

p
y,

 m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
PC

A
)

H
o

rs
e 

m
ac

ke
re

l (
Tr

ac
h

u
ru

s 
tr

ac
h

u
ru

s)
, 

Eu
ro

p
ea

n
 a

n
ch

o
vy

 (
En

g
ra

u
lis

 e
n

cr
as

ic
o

lu
s)

, 
re

d
 m

u
lle

t 
(M

u
llu

s 
su

rm
u

le
tu

s)
, b

lu
ef

is
h

 
(P

o
m

at
am

u
s 

sa
lt

at
ri

x)
, s

al
m

o
n

 (
Sa

lm
o

 s
al

ar
),

 
fl

yi
n

g
 g

u
rn

ar
d

 (
Tr

ig
la

 lu
ce

rn
a)

D
o

u
b

le
‑f

ro
ze

n
 f

is
h

V
el

io
ğl

u
 e

t 
al

., 
20

15

Zh
u

 e
t 

al
., 

20
13

N
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
PC

A
, m

u
lt

ip
le

 
lin

ea
r 

re
g

re
ss

io
n

 [
M

LR
])

H
o

rs
e 

m
ac

ke
re

l (
Tr

ac
h

u
ru

s 
tr

ac
h

u
ru

s)
U

d
d

in
 a

n
d

 O
ka

za
ki

, 2
00

4

N
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
PC

A
, P

LS
‑D

A
, 

O
PL

S‑
D

A
)

Se
a‑

b
re

am
 (

Sp
ar

u
s 

au
ra

ta
),

 r
ed

 m
u

lle
t 

(M
u

llu
s 

b
ar

b
at

u
s)

, s
o

le
 (

So
le

a 
vu

lg
ar

is
),

 
sw

o
rd

fi
sh

 (
X

ip
h

ia
s 

g
la

d
iu

s)

O
tt

av
ia

n
 e

t 
al

., 
20

13

N
IR

, M
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
PC

A
, 

LD
A

, S
IM

C
A

)
A

tl
an

ti
c 

m
u

lle
t 

(P
se

u
d

u
p

en
eu

s 
p

ra
ye

n
si

s)
A

la
m

p
re

se
 a

n
d

 
C

as
ir

ag
h

i, 
20

15

N
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
PC

A
, P

LS
, 

LD
A

, l
o

g
is

ti
c 

re
g

re
ss

io
n

 [
LR

],
 R

F,
 e

xt
re

m
e 

g
ra

d
ie

n
t 

b
o

o
st

in
g

 [
X

G
B

],
 S

V
M

)

A
la

sk
an

 p
o

llo
ck

 (
G

ad
u

s 
ch

al
co

g
ra

m
m

u
),

 
co

d
 (

G
ad

u
s 

m
o

rh
u

a)
, E

u
ro

p
ea

n
 p

la
ic

e 
(P

le
u

ro
n

ec
te

s 
p

la
te

ss
a)

, s
o

le
 (

So
le

a 
so

le
a)

, 
tu

rb
o

t 
(P

se
tt

a 
m

ax
im

a)

In
fl

u
en

ce
 o

f 
th

e 
p

o
si

ti
o

n
 o

f 
th

e 
m

ea
su

re
m

en
t

G
o

n
ça

lv
es

 e
t 

al
., 

20
21

N
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
PL

S‑
D

A
) 

B
ig

ey
e 

tu
n

a 
(T

h
u

n
n

u
s 

o
b

es
u

s)
In

fl
u

en
ce

 o
f 

th
e 

ad
d

it
io

n
 o

f 
w

at
er

 a
n

d
 a

d
d

it
iv

es
 

to
 t

h
e 

ti
ss

u
e

C
o

m
p

ar
is

o
n

 w
it

h
 b

io
el

ec
tr

ic
al

 im
p

ed
an

ce
 a

n
al

ys
is

 
an

d
 t

im
e 

d
o

m
ai

n
 r

ef
le

ct
o

m
et

ry

N
ie

to
‑O

rt
eg

a 
et

 a
l.,

 2
02

2

N
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
PL

S‑
D

A
)

M
ac

ke
re

l (
Sc

o
m

b
er

 s
co

m
b

ru
s)

In
fl

u
en

ce
 o

f 
fr

ee
zi

n
g

 p
ro

ce
d

u
re

D
o

u
b

le
‑f

ro
ze

n
 f

is
h

C
o

m
p

ar
is

o
n

 o
f 

tw
o

 h
an

d
h

el
d

 N
IR

 d
ev

ic
es

In
fl

u
en

ce
 o

f 
se

as
o

n
al

 c
h

ar
ac

te
ri

st
ic

s

G
ir

ó
-C

an
d

an
ed

o
 e

t 
al

., 
20

24

N
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
SI

M
C

A
, 

PL
S‑

D
A

)
C

ar
p

 (
C

yp
ri

n
u

s 
ca

rp
io

)
In

fl
u

en
ce

 o
f 

m
ea

su
re

m
en

t 
p

o
si

ti
o

n

D
o

u
b

le
‑f

ro
ze

n
 f

is
h

A
ta

n
as

so
va

 e
t 

al
., 

20
24

V
is

/N
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
SI

M
C

A
, 

PC
A

‑D
A

)
Se

a‑
b

re
am

 (
Pa

g
ru

s 
m

aj
o

r)
U

d
d

in
 e

t 
al

., 
20

05

V
is

/N
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
PC

A
, K

N
N

, 
PL

SR
)

C
o

d
 (

G
ad

u
s 

m
o

rh
u

a)
C

o
m

p
ar

is
o

n
 o

f 
st

at
io

n
ar

y 
in

st
ru

m
en

t 
w

it
h

 
h

an
d

h
el

d
 d

ev
ic

e
Si

ve
rt

se
n

 e
t 

al
., 

20
11



48 Food fraud in the fisheries and aquaculture sector

TA
B

LE
 2

 O
ve

rv
ie

w
 o

f 
p

u
b

lis
h

ed
 a

n
al

yt
ic

al
 m

et
h

o
d

s 
to

 d
if

fe
re

n
ti

at
e 

b
et

w
ee

n
 f

re
sh

 a
n

d
 f

ro
ze

n
‑t

h
aw

ed
 f

is
h

 (
co

n
ti

n
u

ed
)

A
n

al
yt

ic
al

 m
et

h
o

d
Fi

sh
 s

p
ec

ie
s

A
sp

ec
ts

 f
o

r 
fu

rt
h

er
 r

es
ea

rc
h

R
ef

er
en

ce
C

at
eg

o
ry

M
et

h
o

d
 s

p
ec

if
ic

s

In
fl

u
en

ce
 o

f 
m

ea
su

re
m

en
t 

p
o

si
ti

o
n

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

re
sh

 f
is

h
)

V
is

/N
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
PL

S‑
D

A
, 

d
es

cr
ip

ti
ve

 p
ri

n
ci

p
al

‑c
o

m
p

o
n

en
t 

sc
o

re
s)

Sw
o

rd
fi

sh
 (

X
ip

h
ia

s 
g

la
d

iu
s)

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

te
m

p
er

at
u

re
 (

fr
o

ze
n

 f
is

h
)

Fa
so

la
to

 e
t 

al
., 

20
12

V
is

/N
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
PC

A
, K

N
N

, 
PL

SR
)

Sa
lm

o
n

 (
Sa

lm
o

 s
al

ar
)

In
fl

u
en

ce
 o

f 
m

ea
su

re
m

en
t 

p
o

si
ti

o
n

K
im

iy
a 

et
 a

l.,
 2

01
3

V
is

/N
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
PC

A
, 

LS
‑S

V
M

)
H

al
ib

u
t 

(P
se

tt
a 

m
ax

im
a)

In
fl

u
en

ce
 o

f 
fr

ee
zi

n
g

 p
ro

ce
d

u
re

Zh
u

 e
t 

al
., 

20
13

V
is

/N
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
PC

A
, 

PL
S‑

D
A

)
W

es
t 

A
fr

ic
an

 g
o

at
fi

sh
 (

Ps
eu

d
u

p
en

eu
s 

p
ra

ye
n

si
s)

O
tt

av
ia

n
 e

t 
al

., 
20

14

V
is

/N
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
SI

M
C

A
, 

LS
‑S

V
M

, p
ro

b
ab

ili
st

ic
 n

eu
ra

l n
et

w
o

rk
 [

PN
N

])
G

ra
ss

 c
ar

p
 (

C
te

n
o

p
h

ar
yn

g
o

d
o

n
 id

el
lu

s)
In

fl
u

en
ce

 o
f 

st
o

ra
g

e 
te

m
p

er
at

u
re

 (
fr

o
ze

n
 f

is
h

)
C

h
en

g
 e

t 
al

., 
20

15

V
is

/N
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
PC

A
, 

PL
S‑

D
A

)
Tu

n
a 

(T
h

u
n

n
u

s 
th

yn
n

u
s)

In
fl

u
en

ce
 o

f 
b

lo
o

m
in

g
 (

m
yo

g
lo

b
in

 o
xy

g
en

at
io

n
)

In
fl

u
en

ce
 o

f 
w

at
er

 c
o

n
te

n
t 

an
d

 m
ea

su
re

m
en

t 
te

m
p

er
at

u
re

 o
n

 t
h

e 
m

ea
su

re
m

en
ts

R
ei

s 
et

 a
l.,

 2
01

7

V
is

/N
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
PC

A
, K

N
N

)
C

o
d

 (
G

ad
u

s 
m

o
rh

u
a)

D
o

u
b

le
‑f

ro
ze

n
 f

is
h

In
fl

u
en

ce
 o

f 
fr

ee
zi

n
g

 p
ro

ce
d

u
re

 

In
fl

u
en

ce
 o

f 
th

aw
in

g
 p

ro
ce

d
u

re

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

ro
ze

n
 f

is
h

)

W
as

h
b

u
rn

 e
t 

al
., 

20
17

V
is

/N
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 
(p

ri
n

ci
p

al
‑c

o
m

p
o

n
en

t 
an

al
ys

is
 [

PC
A

] 
an

d
 

se
q

u
en

ti
al

 f
ea

tu
re

 s
el

ec
ti

o
n

 [
SF

S]
, s

ev
er

al
 

m
ac

h
in

e‑
le

ar
n

in
g

 c
la

ss
if

ie
rs

) 

R
ed

 s
n

ap
p

er
 (

Lu
tj

an
u

s 
ca

m
p

ec
h

an
u

s)
D

o
u

b
le

‑f
ro

ze
n

 f
is

h
Q

in
 e

t 
al

., 
20

20

V
is

/N
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
PL

S‑
D

A
)

Pe
ar

l g
en

ti
an

 g
ro

u
p

er
 (

Ep
in

ep
h

el
u

s 
la

n
ce

o
la

tu
s 

×
 E

p
in

ep
h

el
u

s 
fu

sc
o

g
u

tt
at

u
s)

In
fl

u
en

ce
 o

f 
m

ea
su

re
m

en
t 

p
o

si
ti

o
n

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

es
 (

fr
es

h
 a

n
d

 
fr

o
ze

n
‑t

h
aw

ed
 f

is
h

)

C
h

en
 e

t 
al

., 
20

21

M
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
PC

A
, F

D
A

)
W

h
it

in
g

 (
M

er
la

n
g

iu
s 

m
er

la
n

g
u

s)
In

fl
u

en
ce

 o
f 

fr
ee

zi
n

g
 p

ro
ce

d
u

re
 

In
fl

u
en

ce
 o

f 
th

aw
in

g
 p

ro
ce

d
u

re

K
ar

o
u

i e
t 

al
., 

20
07

M
IR

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
PC

A
, F

D
A

)
Se

vr
u

g
a 

(A
ci

p
en

se
r 

st
el

la
tu

s)
In

fl
u

en
ce

 o
f 

st
o

ra
g

e 
ti

m
e 

(f
re

sh
 f

is
h

 p
ri

o
r 

fr
ee

zi
n

g
)

V
ilk

o
va

 e
t 

al
., 

20
23



4949Analytical tools to detect food fraud in the aquatic sector

TA
B

LE
 2

 O
ve

rv
ie

w
 o

f 
p

u
b

lis
h

ed
 a

n
al

yt
ic

al
 m

et
h

o
d

s 
to

 d
if

fe
re

n
ti

at
e 

b
et

w
ee

n
 f

re
sh

 a
n

d
 f

ro
ze

n
‑t

h
aw

ed
 f

is
h

 (
co

n
ti

n
u

ed
)

A
n

al
yt

ic
al

 m
et

h
o

d
Fi

sh
 s

p
ec

ie
s

A
sp

ec
ts

 f
o

r 
fu

rt
h

er
 r

es
ea

rc
h

R
ef

er
en

ce
C

at
eg

o
ry

M
et

h
o

d
 s

p
ec

if
ic

s

A
cc

o
m

p
an

yi
n

g
 e

le
ct

ro
p

h
o

re
si

s 
an

al
ys

es

Fl
u

o
re

sc
en

ce
, m

u
lt

iv
ar

ia
te

 d
at

a 
an

al
ys

is
 (

PC
A

, 
FD

A
)

W
h

it
in

g
 (

M
er

la
n

g
iu

s 
m

er
la

n
g

u
s)

In
fl

u
en

ce
 o

f 
fr

ee
zi

n
g

 p
ro

ce
d

u
re

K
ar

o
u

i e
t 

al
., 

20
06

In
fl

u
en

ce
 o

f 
th

aw
in

g
 p

ro
ce

d
u

re

Fl
u

o
re

sc
en

ce
, m

u
lt

iv
ar

ia
te

 d
at

a 
an

al
ys

is
 (

PC
A

, 
FD

A
)

Se
ab

as
s 

(D
ic

en
tr

ar
ch

u
s 

la
b

ra
x)

A
d

d
it

io
n

al
 d

et
er

m
in

at
io

n
 o

f 
p

H
, m

o
is

tu
re

 
co

n
te

n
t,

 t
ex

tu
re

‑p
ro

fi
le

 a
n

al
ys

is
, c

o
lo

r 
m

ea
su

re
m

en
ts

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

re
sh

 f
is

h
, f

re
sh

 f
is

h
 

p
ri

o
r 

fr
ee

zi
n

g
, f

ro
ze

n
‑t

h
aw

ed
 f

is
h

)

K
ar

o
u

i e
t 

al
., 

20
17

1H
 N

M
R

, q
u

an
ti

ta
ti

ve
, m

u
lt

iv
ar

ia
te

 d
at

a 
an

al
ys

is
 (

PC
A

) 
Sa

lm
o

n
 (

Sa
lm

o
 s

al
ar

)
C

o
n

ce
n

tr
at

io
n

 o
f 

as
p

ar
ta

te
 a

s 
in

d
ic

at
o

r
Sh

u
m

ili
n

a 
et

 a
l.,

 2
02

0

1H
 N

M
R

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 
(P

C
A

‑L
D

A
)

M
ac

ke
re

l (
Sc

o
m

b
er

 s
co

m
b

ru
s)

, t
ro

u
t 

(O
n

co
rh

yn
ch

u
s 

m
yk

is
s,

 O
n

co
rh

yn
ch

u
s 

ag
u

ab
o

n
it

a,
 S

al
m

o
 t

ru
tt

a 
fa

ri
o

),
 c

o
d

 (
G

ad
u

s 
m

o
rh

u
a)

In
fl

u
en

ce
 o

f 
fr

ee
zi

n
g

 p
ro

ce
d

u
re

In
ve

st
ig

at
io

n
 o

f 
p

o
la

r 
an

d
 li

p
id

 m
et

ab
o

lit
es

In
ve

st
ig

at
io

n
 v

ia
 1

3C
 N

M
R

, 3
1P

 N
M

R

K
al

te
n

b
ac

h
 e

t 
al

., 
20

24

M
R

I
R

ai
n

b
o

w
 t

ro
u

t 
(O

n
co

rh
yn

ch
u

s 
m

yk
is

s)
In

fl
u

en
ce

 o
f 

fr
ee

zi
n

g
 p

ro
ce

d
u

re

D
o

u
b

le
‑f

ro
ze

n
 f

is
h

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

ro
ze

n
 f

is
h

)

N
o

tt
 e

t 
al

., 
19

99
a

M
R

I
C

o
d

 (
G

ad
u

s 
m

o
rh

u
a)

, m
ac

ke
re

l (
Sc

o
m

b
er

 
sc

o
m

b
ru

s)
In

fl
u

en
ce

 o
f 

st
o

ra
g

e 
ti

m
e 

(f
ro

ze
n

 f
is

h
)

N
o

tt
 e

t 
al

. 1
99

9b



50 Food fraud in the fisheries and aquaculture sector

TA
B

LE
 2

 O
ve

rv
ie

w
 o

f 
p

u
b

lis
h

ed
 a

n
al

yt
ic

al
 m

et
h

o
d

s 
to

 d
if

fe
re

n
ti

at
e 

b
et

w
ee

n
 f

re
sh

 a
n

d
 f

ro
ze

n
‑t

h
aw

ed
 f

is
h

 (
co

n
ti

n
u

ed
)

A
n

al
yt

ic
al

 m
et

h
o

d
Fi

sh
 s

p
ec

ie
s

A
sp

ec
ts

 f
o

r 
fu

rt
h

er
 r

es
ea

rc
h

R
ef

er
en

ce
C

at
eg

o
ry

M
et

h
o

d
 s

p
ec

if
ic

s

M
as

s 
sp

ec
tr

o
m

et
ry

SP
M

E-
G

C
/M

S
Se

ab
re

am
 (

Sp
ar

u
s 

au
ra

ta
)

A
cc

o
m

p
an

yi
n

g
 d

et
er

m
in

at
io

n
 o

f 
p

er
o

xi
d

e 
va

lu
e,

 
th

io
b

ar
b

it
u

ri
c 

ac
id

‑r
ea

ct
iv

e 
su

b
st

an
ce

s 
in

d
ex

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

ro
ze

n
 f

is
h

)

Id
en

ti
fi

ca
ti

o
n

 o
f 

m
et

ab
o

lit
e 

m
ar

ke
rs

 (
1‑

o
ct

en
‑3

‑o
l, 

1‑
p

en
te

n
‑3

‑o
l a

n
d

 Z
‑4

‑h
ep

te
n

al
)

Ig
le

si
as

 e
t 

al
., 

20
09

SP
M

E‑
G

C
/M

S,
 m

u
lt

iv
ar

ia
te

 d
at

a 
an

al
ys

is
 (

PC
A

, 
as

ce
n

d
in

g
 h

ie
ra

rc
h

ic
al

 c
la

ss
if

ic
at

io
n

 [
A

H
C

])
Se

ab
as

s 
(D

ic
en

tr
ar

ch
u

s 
la

b
ra

x)
, s

ea
‑b

re
am

 
(S

p
ar

u
s 

au
ra

ta
),

 c
o

d
 (

G
ad

u
s 

m
o

rh
u

a)
, 

sa
lm

o
n

 (
Sa

lm
o

 s
al

ar
)

A
cc

o
m

p
an

yi
n

g
 m

ic
ro

b
io

lo
g

ic
al

 In
ve

st
ig

at
io

n
s 

(t
o

ta
l a

er
o

b
ic

 f
lo

ra
, P

se
u

d
o

m
o

n
as

 s
p

p
., 

Sh
ew

an
el

la
 p

u
tr

ef
ac

ie
n

s)
 a

n
d

 t
o

ta
l v

o
la

ti
le

 b
as

ic
 

n
it

ro
g

en
/t

ri
m

et
h

yl
am

in
e 

as
sa

y

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

ro
ze

n
 f

is
h

)

Id
en

ti
fi

ca
ti

o
n

 o
f 

m
et

ab
o

lit
e 

m
ar

ke
rs

 (
d

im
et

h
yl

 
su

lf
id

e,
 3

‑m
et

h
yl

b
u

ta
n

al
, e

th
yl

 a
ce

ta
te

 a
n

d
 

2‑
m

et
h

yl
b

u
ta

n
al

)

Le
d

u
c 

et
 a

l.,
 2

01
2

H
PL

C
‑H

R
M

S,
 m

u
lt

iv
ar

ia
te

 d
at

a 
an

al
ys

is
 (

PC
A

)
Sa

lm
o

n
 (

Sa
lm

o
 s

al
ar

),
 b

u
lle

t 
tu

n
a 

(A
u

xi
s 

ro
ch

ei
)

In
fl

u
en

ce
 o

f 
fr

ee
zi

n
g

 p
ro

ce
d

u
re

 (
fo

r 
sa

lm
o

n
 o

n
ly

)

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

ro
ze

n
 f

is
h

) 

Id
en

ti
fi

ca
ti

o
n

 o
f 

m
et

ab
o

lit
e 

m
ar

ke
rs

 (
ar

g
in

in
e 

an
d

 
it

s 
m

et
ab

o
lit

es
 f

o
r 

sa
lm

o
n

, p
h

o
sp

h
at

ed
 c

h
o

lin
e/

et
an

o
la

m
in

e 
d

er
iv

at
es

 f
o

r 
b

u
lle

t 
tu

n
a)

C
h

ie
sa

 e
t 

al
., 

20
20

D
A

R
T‑

H
R

M
S,

 m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 
(P

LS
‑D

A
, S

V
M

)
Se

ab
as

s 
(D

ic
en

tr
ar

ch
u

s 
la

b
ra

x)
U

n
iv

ar
ia

te
 a

n
al

ys
is

 o
f 

th
e 

m
o

st
 im

p
o

rt
an

t 
25

 m
/z

 
va

lu
es

A
p

p
lic

at
io

n
 o

n
 s

al
m

o
n

 (
Sa

lm
o

 s
al

ar
)

M
as

sa
ro

 e
t 

al
., 

20
21

LC
‑H

R
M

S 
m

u
lt

iv
ar

ia
te

 d
at

a 
an

al
ys

is
 (

PC
A

, 
PL

S‑
D

A
)

Se
ab

as
s 

(D
ic

en
tr

ar
ch

u
s 

la
b

ra
x)

Id
en

ti
fi

ca
ti

o
n

 o
f 

m
et

ab
o

lit
e 

m
ar

ke
rs

 
(e

ic
o

sa
p

en
ta

en
o

ic
 a

ci
d

, d
o

co
sa

h
ex

ae
n

o
ic

 a
ci

d
)

A
p

p
lic

at
io

n
 o

n
 s

al
m

o
n

 (
Sa

lm
o

 s
al

ar
)

St
el

la
 e

t 
al

., 
20

22



5151Analytical tools to detect food fraud in the aquatic sector

TA
B

LE
 2

 O
ve

rv
ie

w
 o

f 
p

u
b

lis
h

ed
 a

n
al

yt
ic

al
 m

et
h

o
d

s 
to

 d
if

fe
re

n
ti

at
e 

b
et

w
ee

n
 f

re
sh

 a
n

d
 f

ro
ze

n
‑t

h
aw

ed
 f

is
h

 (
co

n
ti

n
u

ed
)

A
n

al
yt

ic
al

 m
et

h
o

d
Fi

sh
 s

p
ec

ie
s

A
sp

ec
ts

 f
o

r 
fu

rt
h

er
 r

es
ea

rc
h

R
ef

er
en

ce
C

at
eg

o
ry

M
et

h
o

d
 s

p
ec

if
ic

s

El
ec

tr
ic

al

To
rr

ym
et

er
Pl

ai
ce

 (
Pl

eu
ro

n
ec

te
s 

p
la

te
ss

a)
, w

h
it

in
g

 
(M

er
la

n
g

u
s 

m
er

la
n

g
u

s)
, m

ac
ke

re
l (

Sc
o

m
b

er
 

sc
o

m
b

ru
s)

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

re
sh

 a
n

d
 f

ro
ze

n
 f

is
h

)

C
o

m
p

ar
is

o
n

 w
it

h
 e

n
zy

m
at

ic
 e

xa
m

in
at

io
n

 a
n

d
 a

 
p

h
ys

io
lo

g
ic

al
 m

et
h

o
d

 (
ey

e 
le

n
s)

D
u

fl
o

s 
et

 a
l.,

 2
00

2

Im
p

ed
an

ce
G

ra
ss

 c
ar

p
 (

C
te

n
o

p
h

ar
yn

g
o

d
o

n
 id

el
lu

s)
, 

ti
la

p
ia

 (
O

re
o

ch
ro

m
is

 n
ilo

ti
cu

s)
In

fl
u

en
ce

 o
f 

st
o

ra
g

e 
ti

m
e 

o
f 

fr
es

h
 a

n
d

 
fr

o
ze

n
‑t

h
aw

ed
 f

is
h

Zh
an

g
 e

t 
al

., 
20

10

Im
p

ed
an

ce
, m

u
lt

iv
ar

ia
te

 d
at

a 
an

al
ys

is
 (

PC
A

, 
D

A
)

Sa
lm

o
n

 (
Sa

lm
o

 s
al

ar
)

A
d

d
it

io
n

al
 t

ex
tu

re
 m

ea
su

re
m

en
t,

 A
TP

‑r
el

at
ed

 
co

m
p

o
u

n
d

s 
(k

‑v
al

u
e)

, m
o

is
tu

re
, p

H
, t

o
ta

l v
o

la
ti

le
 

b
as

ic
 n

it
ro

g
en

, t
h

io
b

ar
b

it
u

ri
c 

ac
id

, w
at

er
‑h

o
ld

in
g

 
ca

p
ac

it
y,

 d
ri

p
 lo

ss
, m

ic
ro

b
io

lo
g

ic
al

 In
ve

st
ig

at
io

n
s 

(m
es

o
p

h
ili

c 
co

u
n

ts
, E

n
te

ro
b

ac
te

ri
ac

ea
e)

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

ro
ze

n
 f

is
h

)

D
o

u
b

le
‑f

ro
ze

n
 f

is
h

Fe
rn

án
d

ez
‑S

eg
o

vi
a 

et
 a

l.,
 

20
12

Im
p

ed
an

ce
, m

u
lt

iv
ar

ia
te

 d
at

a 
an

al
ys

is
 (

PC
A

, 
D

A
)

Se
a‑

b
re

am
 (

Sp
ar

u
s 

au
ra

ta
)

A
d

d
it

io
n

al
 t

ex
tu

re
 m

ea
su

re
m

en
t,

 A
TP

‑r
el

at
ed

 
co

m
p

o
u

n
d

s 
(k

‑v
al

u
e)

, m
o

is
tu

re
, p

H
, t

o
ta

l v
o

la
ti

le
 

b
as

ic
 n

it
ro

g
en

, t
h

io
b

ar
b

it
u

ri
c 

ac
id

, w
at

er
‑h

o
ld

in
g

 
ca

p
ac

it
y,

 d
ri

p
 lo

ss
, m

ic
ro

b
io

lo
g

ic
al

 In
ve

st
ig

at
io

n
s 

(m
es

o
p

h
ili

c 
co

u
n

ts
, E

n
te

ro
b

ac
te

ri
ac

ea
e)

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

ro
ze

n
 f

is
h

)

D
o

u
b

le
‑f

ro
ze

n
 f

is
h

Fu
en

te
s 

et
 a

l. 
20

13

Im
p

ed
an

ce
, m

u
lt

iv
ar

ia
te

 d
at

a 
an

al
ys

is
 (

PC
A

, 
LD

A
, S

V
M

, b
ac

k 
p

ro
p

ag
at

io
n

 a
rt

if
ic

ia
l n

eu
ra

l 
n

et
w

o
rk

 [
B

PA
N

N
],

 P
LS

)

Sa
lm

o
n

 (
Sa

lm
o

 s
al

ar
)

A
d

d
it

io
n

al
 t

o
ta

l v
o

la
ti

le
 b

as
ic

 n
it

ro
g

en
 

d
et

er
m

in
at

io
n

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

re
sh

 f
is

h
)

Su
n

 e
t 

al
., 

20
20

B
io

el
ec

tr
ic

al
 im

p
ed

an
ce

 a
n

al
ys

is
, m

u
lt

iv
ar

ia
te

 
d

at
a 

an
al

ys
is

 (
PL

S-
D

A
)

B
ig

ey
e 

tu
n

a 
(T

h
u

n
n

u
s 

o
b

es
u

s)
In

fl
u

en
ce

 o
f 

th
e 

ad
d

it
io

n
 o

f 
w

at
er

 a
n

d
 a

d
d

it
iv

es
 

to
 t

h
e 

ti
ss

u
e

C
o

m
p

ar
is

o
n

 w
it

h
 N

IR
 a

n
d

 t
im

e‑
d

o
m

ai
n

 
re

fl
ec

to
m

et
ry

N
ie

to
‑O

rt
eg

a 
et

 a
l.,

 2
02

2

B
io

im
p

ed
an

ce
, m

u
lt

iv
ar

ia
te

 d
at

a 
an

al
ys

is
 

(S
V

M
, L

D
A

, K
N

N
, R

F)
Sa

lm
o

n
 (

Sa
lm

o
 s

al
ar

)
M

u
lt

ip
le

 f
ro

ze
n

 f
is

h
D

. Z
h

an
g

 e
t 

al
., 

20
24

a

Ti
m

e‑
d

o
m

ai
n

 r
ef

le
ct

o
m

et
ry

, m
u

lt
iv

ar
ia

te
 d

at
a 

an
al

ys
is

 (
PL

S‑
D

A
)

B
ig

ey
e 

tu
n

a 
(T

h
u

n
n

u
s 

o
b

es
u

s)
In

fl
u

en
ce

 o
f 

th
e 

ad
d

it
io

n
 o

f 
w

at
er

 a
n

d
 a

d
d

it
iv

es
 

to
 t

h
e 

ti
ss

u
e

C
o

m
p

ar
is

o
n

 w
it

h
 b

io
el

ec
tr

ic
al

 im
p

ed
an

ce
 a

n
al

ys
is

 
an

d
 N

IR

N
ie

to
‑O

rt
eg

a 
et

 a
l.,

 2
02

2



52 Food fraud in the fisheries and aquaculture sector

TA
B

LE
 2

 O
ve

rv
ie

w
 o

f 
p

u
b

lis
h

ed
 a

n
al

yt
ic

al
 m

et
h

o
d

s 
to

 d
if

fe
re

n
ti

at
e 

b
et

w
ee

n
 f

re
sh

 a
n

d
 f

ro
ze

n
‑t

h
aw

ed
 f

is
h

 (
co

n
ti

n
u

ed
)

A
n

al
yt

ic
al

 m
et

h
o

d
Fi

sh
 s

p
ec

ie
s

A
sp

ec
ts

 f
o

r 
fu

rt
h

er
 r

es
ea

rc
h

R
ef

er
en

ce
C

at
eg

o
ry

M
et

h
o

d
 s

p
ec

if
ic

s

El
ec

tr
o

p
h

o
re

si
s

Tw
o

‑d
im

en
si

o
n

al
 g

el
 e

le
ct

ro
p

h
o

re
si

s
Se

ab
as

s 
(D

ic
en

tr
ar

ch
u

s 
la

b
ra

x)
A

cc
o

m
p

an
yi

n
g

 a
n

al
ys

es
 o

f 
b

io
g

en
ic

 a
m

in
es

 a
n

d
 

to
ta

l v
o

la
ti

le
 b

as
ic

 n
it

ro
g

en

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

re
sh

 f
is

h
)

Id
en

ti
fi

ca
ti

o
n

 o
f 

m
ar

ke
rs

 (
M

S/
M

S,
 p

ar
va

lb
u

m
in

s)

Et
h

u
in

 e
t 

al
., 

20
15

M
it

o
ch

o
n

d
ri

al
 

p
er

m
ea

b
ili

ty
 

m
ea

su
re

m
en

t

Se
a‑

b
re

am
 (

Sp
ar

u
s 

au
ra

ta
)

C
o

m
p

ar
is

o
n

 o
f 

tw
o

 d
if

fe
re

n
t 

m
ea

su
re

m
en

t 
m

et
h

o
d

s

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

re
sh

 f
is

h
)

B
o

u
ch

en
d

h
o

m
m

e 
et

 a
l.,

 
20

22

M
u

sc
le

‑fi
b

re
 

p
er

m
ea

b
ili

ty
 

m
ea

su
re

m
en

t

Se
a‑

b
re

am
 (

Sp
ar

u
s 

au
ra

ta
)

C
o

m
p

ar
is

o
n

 o
f 

tw
o

 d
if

fe
re

n
t 

m
ea

su
re

m
en

t 
m

et
h

o
d

s

In
fl

u
en

ce
 o

f 
st

o
ra

g
e 

ti
m

e 
(f

re
sh

 f
is

h
)

B
o

u
ch

en
d

h
o

m
m

e 
et

 a
l.,

 
20

23

Fr
ee

 c
al

ci
u

m
 

co
n

ce
n

tr
at

io
n

Se
ab

as
s 

(D
ic

en
tr

ar
ch

u
s 

la
b

ra
x)

C
o

m
p

ar
is

o
n

 w
it

h
 o

th
er

 m
et

h
o

d
s 

(a
ct

iv
it

y 
o

f 
α‑

g
lu

co
si

d
as

e,
 d

et
er

m
in

at
io

n
 o

f 
p

ro
te

in
 c

o
n

te
n

t 
an

d
 c

o
n

ce
n

tr
at

io
n

 o
f,

 n
u

cl
eo

ti
d

es
 a

n
d

 r
el

at
ed

 
co

m
p

o
u

n
d

s)

M
ar

la
rd

 e
t 

al
., 

20
19

N
u

cl
eo

ti
d

es
 a

n
d

 
re

la
te

d
 c

o
m

p
o

u
n

d
s

Se
ab

as
s 

(D
ic

en
tr

ar
ch

u
s 

la
b

ra
x)

C
o

m
p

ar
is

o
n

 w
it

h
 o

th
er

 m
et

h
o

d
s 

(a
ct

iv
it

y 
o

f 
α‑

g
lu

co
si

d
as

e,
 d

et
er

m
in

at
io

n
 o

f 
p

ro
te

in
 c

o
n

te
n

t,
 

fr
ee

 c
al

ci
u

m
 c

o
n

ce
n

tr
at

io
n

)

M
ar

la
rd

 e
t 

al
., 

20
19

N
o

te
s:

 D
A

: d
is

cr
im

in
an

t 
an

al
ys

is
; D

A
R

T‑
H

R
M

S:
 d

ir
ec

t 
an

al
ys

is
 in

 r
ea

l‑
ti

m
e 

h
ig

h
‑r

es
o

lu
ti

o
n

 m
as

s 
sp

ec
tr

o
m

et
ry

; F
D

A
: f

ac
to

ri
al

 d
is

cr
im

in
an

t 
an

al
ys

is
; H

PL
C

‑H
R

M
S:

 h
ig

h
‑p

er
fo

rm
an

ce
 li

q
u

id
 c

h
ro

m
at

o
g

ra
p

h
y 

co
u

p
le

d
 

w
it

h
 h

ig
h

‑r
es

o
lu

ti
o

n
 m

as
s 

sp
ec

tr
o

m
et

ry
; K

N
N

: k
‑n

ea
re

st
 n

ei
g

h
b

o
u

r 
cl

as
si

fi
er

; L
C

‑H
R

M
S:

 li
q

u
id

 c
h

ro
m

at
o

g
ra

p
h

y 
co

u
p

le
d

 t
o

 h
ig

h
‑r

es
o

lu
ti

o
n

 m
as

s 
sp

ec
tr

o
m

et
ry

; L
D

A
: l

in
ea

r 
d

is
cr

im
in

an
t 

an
al

ys
is

; L
S‑

SV
M

: l
ea

st
 s

q
u

ar
es

 
su

p
p

o
rt

 v
ec

to
r 

m
ac

h
in

e;
 M

IR
: m

id
‑i

n
fr

ar
ed

; M
R

I: 
m

ag
n

et
ic

 r
es

o
n

an
ce

 im
ag

in
g

; M
S/

M
S:

 t
an

d
em

 m
as

s 
sp

ec
tr

o
m

et
ry

; N
IR

: n
ea

r‑
in

fr
ar

ed
; N

M
R

: n
u

cl
ea

r 
m

ag
n

et
ic

 r
es

o
n

an
ce

; O
PL

S‑
D

A
: o

rt
h

o
g

o
n

al
 p

ar
ti

al
 le

as
t 

sq
u

ar
es

 
d

is
cr

im
in

an
t 

an
al

ys
is

; P
C

A
: p

ri
n

ci
p

al
‑c

o
m

p
o

n
en

ts
 a

n
al

ys
is

; P
C

A
‑L

D
A

: p
ri

n
ci

p
al

‑c
o

m
p

o
n

en
ts

 a
n

al
ys

is
 in

 c
o

m
b

in
at

io
n

 w
it

h
 li

n
ea

r 
d

is
cr

im
in

an
t 

an
al

ys
is

; P
LS

: p
ar

ti
al

 le
as

t 
sq

u
ar

es
; P

LS
‑D

A
: p

ar
ti

al
 le

as
t 

sq
u

ar
es

 d
is

cr
im

in
an

t 
an

al
ys

is
; P

LS
R

: p
ar

ti
al

 le
as

t 
sq

u
ar

es
 r

eg
re

ss
io

n
; R

F:
 r

an
d

o
m

 f
o

re
st

; S
IM

C
A

: s
o

ft
 in

d
ep

en
d

en
t 

m
o

d
el

in
g

 o
f 

cl
as

s 
an

al
o

g
y;

 S
PM

E‑
G

C
/M

S:
 s

o
lid

 p
h

as
e 

m
ic

ro
ex

tr
ac

ti
o

n
/g

as
 c

h
ro

m
at

o
g

ra
p

h
y/

m
as

s 
sp

ec
tr

o
m

et
ry

; S
V

M
: 

su
p

p
o

rt
 v

ec
to

r 
m

ac
h

in
e;

 v
is

: v
is

ib
le

.



5353Analytical tools to detect food fraud in the aquatic sector

Hassoun et al. (2020a) summarized studies focusing on methods used to differentiate 
between fresh and frozen‑thawed fish and other seafood. The promising methods 
described in their summary, along with those described in more recently published 
studies, are presented in Table 2. Besides the literature listed in Table 2, other methods 
that were tested showed no success in terms of differentiating fresh and frozen‑thawed 
fish. For example, regarding drip loss, no significant differences were observed in 
the water content of fresh, frozen‑thawed and double‑frozen‑thawed rainbow trout 
(Oncorhynchus mykiss) samples (Popelka et al., 2014). Negligible differences in shelf 
life and bacterial spoilage between fresh and frozen‑thawed fish have been reported 
(Fagan et al., 2003; Popelka et al., 2014; Yin et al., 2014). However, process parameters 
in the technological implementation can influence shelf life and microbial growth of 
frozen‑thawed fish (Boziaris, 2014; Popelka et al., 2014).

Regarding the techniques listed in Table 2, it should be noted that the methods differ 
in their applicability. For example, some methods are suitable for fish fillets, parts of 
fish fillets and for entire fish as the sample (for instance, nuclear magnetic resonance 
[NMR] analysis [Kaltenbach et al., 2024]), while other methods can only be conducted 
on whole‑fish samples (this includes physiological examination of the eye lens [Duflos 
et al., 2002]). Some approaches are non‑destructive (such as direct near‑infrared (NIR) 
measurement on the fillet  [Kimiya et  al., 2013), while others are destructive (for 
instance, in the required sample preparation (Massaro et  al., 2021]). Some methods 
require negligible or no sample preparation (such as NIR analysis [Karoui et al., 2006]), 
while others rely on extensive sample preparation (as in the case of fat extraction prior 
to Raman analysis [Velioğlu et al., 2015]). Lastly, handheld devices, such as NIR, TDR 
and bioelectrical impedance analysis [Nieto‑Ortega et  al., 2022]) allow for portable 
quality control, while other methods (including mass spectrometry  [Massaro et  al., 
2021]) require expensive, stationary equipment.

Most methods are based on enzymatical, morphological (in particular, histological) 
or spectroscopic investigations, in addition to other approaches (including mass 
spectrometry, impedance, nucleotides and related compounds). Freezing and thawing 
significantly increases the activity of various mitochondrial enzymes (such as 
β‑hydroxyacyl‑coenzyme A‑dehydrogenase [Bernardi et  al., 2019; Duflos et  al., 
2002; Fernández et  al., 1999; Pavlov et  al., 1994]) and lysosomal enzymes (such as 
α‑glucosidase [Alberio et al., 2014; Duflos et al., 2002; Marlard et al., 2019; Nilsson 
and Ekstrand, 1993; Rehbein et al., 1978; Rehbein, 1979; Rehbein and Çakli, 2000]), 
as well as enzymes from blood cells (including β‑N‑acetylglucosaminidase [Alberio 
et al., 2014; Kitamikado et al., 1990; Nilsson and Ekstrand, 1993; Rehbein et al., 1978]). 
Therefore, it is hypothesized that these enzymes are released from the cell organelles 
because of the freezing and thawing procedure (Bernardi et al., 2019; Hassoun et al., 
2020a; Kitamikado et al., 1990; Rehbein and Çakli, 2000). Some authors suggest that 
the analysis of the activity of lysosomal enzymes is more specific than the analysis of 
the activity of mitochondrial enzymes and is therefore a preferred approach (Rehbein 
et al., 1978). One limitation of enzymatic methods, however, is that they are fish‑species 
specific (Verrez‑Bagnis et al., 2018).

Morphological examinations are based on changes in the fish flesh structure or 
the tissue due to the freezing and thawing procedure. These changes include freeze/
thaw artifacts in the flesh (histological examination, such as in Bozzetta et al. [2012]) 
or appearance of the eye lens (transparent or opaque, physiological examination, such 
as in Duflos et  al. [2002]). However, for a histological differentiation, it is already 
known that freeze/thaw artifacts in the flesh of the fish depend on the freezing rate 
and therefore on the freezing procedure  (Hassoun et al., 2020a). Furthermore, these 
methods are time consuming and require highly experienced assessors (Verrez‑Bagnis 
et al., 2018).
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More recently, the topic has been investigated using comprehensive spectroscopic 
techniques (especially NIR and Vis/NIR) and multivariate data analysis. Moreover, 
mass spectrometry was used as an analytical technique. These methods depend on 
an authentic data basis to predict unknown samples as “fresh” or “frozen‑thawed”. 
Specific techniques permit the identification of possible marker substances to detect 
fresh or frozen‑thawed fish. For example, Shumilina et al. (2020) – in a storage trial, 
analysis of trichloroacetic acid extracts of the fish flesh using NMR ‑ suggested aspartic 
acid as a marker substance for frozen‑thawed salmon, while in a Chiesa et al. (2020) 
storage trial, analysis of perchloric acid extracts using non‑targeted HPLC‑HRMS 
proposed arginine and its derivatives as suitable markers for frozen‑thawed salmon. 
Aspartic acid was not mentioned as a relevant metabolite in the study by Chiesa et al. 
(2020), and arginine was not mentioned as a relevant metabolite to distinguish fresh 
from thawed salmon in the study by Shumilina et al. (2020). As reported in another 
study, dimethylamine was suggested as a marker for frozen‑thawed (or otherwise 
processed) cod  (Martinez et  al., 2005). However, Howell et  al. (1996) refuted a 
generally valid dimethylamine formation in frozen fish. Further research is needed to 
confirm reliable marker substances. 

Additionally, many studies demonstrate that some influences on the differentiation 
exist and more are conceivable. Due to extensive postmortem processes, the storage 
time of fresh, frozen‑thawed samples should be considered (Chaijan et  al., 2006; 
Chiesa et al., 2020; Ciampa et al., 2012; Rehbein and Oehlenschläger, 2009; Shumilina 
et al., 2015; Shumilina et al., 2020; Tenyang et al., 2017), as should the storage time 
of frozen fish (Baron et al., 2007; Pirestani et al., 2010; Sánchez‑Alonso et al., 2012; 
Sánchez‑Alonso et al., 2014; Suárez‑Medina et al., 2024) and the storage temperature of 
frozen fish (Baron et al., 2007; Fasolato et al., 2012; Howell et al., 1996; Sánchez‑Alonso 
et al., 2014; Sotelo et al., 1995a). Furthermore, the freezing procedure (Sánchez‑Alonso 
et  al., 2014; Vidaček et  al., 2008; J.  Zhang et  al., 2024b) and the thawing procedure 
(Gökoğlu and Yerlikaya, 2015; Javadian et al., 2013), as well as multiple freezing and 
thawing cycles, also have an impact on the fish sample (Benjakul and Bauer, 2001; 
Giró‑Candanedo et  al., 2024; Pinto et  al., 2020; Samantaray et  al., 2021; Strateva  
et al., 2021; Velioğlu et al., 2015; Vidaček et al., 2008; Washburn et al., 2017). Additional 
treatments to conserve the quality of stored fish, such as superchilling (European 
Commission Delegated Regulation EU 2022/2258, [EU, 2022]), controlled atmosphere 
(Gökoğlu and Yerlikaya, 2015; Kirtil and Oztop, 2016; Ruiz‑Capillas and Moral, 
2002; Sone et al., 2012), and glazing (Boziaris, 2014; Evans, 2008) could be relevant. 
Especially for methods that rely on a database, the database used must be authentic and 
of appropriate size while comprising the required variations (for example, fish species, 
production method [aquaculture, wild catch], producer, diet, seasonal fluctuations, 
storage time, storage temperature, freezing and thawing procedure). Consequently, 
differences in fresh and frozen‑thawed fish could depend on several factors. Some 
studies contain investigations of relevant aspects for which further research is needed 
(see the column “Further investigations or considered aspects” in Table 2).

Applying a general method to differentiate between fresh fish and frozen‑thawed 
fish is questionable. Studies of methods used to differentiate between fresh and 
frozen‑thawed fish show advantages and disadvantages of the different methods 
available. In addition, analytical methods (for instance, for official food‑control systems 
or industry‑based quality‑control systems) should ideally be fast, non‑destructive, and 
should not require reagents or expensive equipment, therefore, the differentiation 
of fresh and frozen‑thawed fish hides analytical challenges. To establish reliable 
methods, the robustness of the method should be verified against as many influences 
as possible. Further research and standardization of methods is needed, also to enable 
an assessment of the occurrence of frozen‑thawed fish sold as fresh fish in the fisheries 
and aquaculture sector.
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7.3 	 METHODS FOR DIFFERENTIATION BETWEEN WILD‑CAUGHT AND 
FARMED FISH 

7.3.1 	 Genetic profiling 
Seafood‑fraud investigations often strive to identify individuals of the same species 
from wild and farmed sources. Landmark investigations by Karlsson et  al. (2011) 
and Glover et  al. (2011) have been conducted on key commercial species including 
Atlantic salmon and Atlantic cod (Gadus morhua), respectively. These investigations 
utilized genetic‑profiling analyses to successfully discriminate between farmed and 
wild individuals regardless of their populations of origin. Karlsson et al. (2011) used  
60 single‑nucleotide polymorphisms (SNPs) to identify the source of individual 
salmon as either farmed or wild. The data from this study compared historical wild 
and farmed salmon populations based on 7  000 SNPs that were widely distributed 
on 27 of the 29 chromosomes (Karlsson et al., 2011), suggesting that these techniques 
can be broadly used in other investigations using other, commercially relevant species. 
Glover et al. (2011) used ten microsatellite loci and the Pan I locus to screen samples 
of wild and farmed cod and showed that wild individuals were genetically distinct 
from farmed fish. Glover et  al. (2011) concluded that these molecular genetic tools 
may be implemented to profile farmed and wild individuals of the same species and 
that other species could also be analysed to further support genetic introgression 
studies. Collectively, the approaches described here have important implications for 
seafood‑fraud investigations involving the identification of farmed vs wild individuals 
(Glover et al., 2011, Karlsson et al., 2011). 

7.3.2 	 Chemical profiling
Apart from genetic profiling, various chemical‑profiling techniques have been used 
to verify claims about wild‑caught fish and to discriminate them from aquaculture 
products. 

Investigation of the fatty‑acid composition can support the differentiation between 
farmed fish and wild fish. Analysis of the proximate and fatty‑acid composition in the 
muscle of wild and farmed sardine (Sardinella brasiliensis) using gas chromatography 
coupled with flame ionization detection (GC‑FID) indicated higher total lipid content 
in farmed fish, while the n‑3 long chain and the n‑6 polyunsaturated fatty acids  
(n-3 LC-PUFA and n-6 PUFA) were higher in wild and farmed sardine (Scheuer et al., 
2024). Busetto et al. (2008) examined the fatty‑acid composition and isotopic signatures 
(carbon [δ13C] and nitrogen [δ15N]) using isotope ratio mass spectrometry (IRMS) to 
differentiate between wild‑caught and farmed turbot (Psetta maxima). Additionally, 
18:2‑6 fatty acids and δ15N were reliable determinants for classification purposes. 
Fiorino et  al. (2019) employed the direct analysis in real‑time high‑resolution mass 
spectrometry (DART‑HRMS) technique, in combination with multivariate analysis, 
to analyse fish lipid extracts and achieved discrimination between wild and farmed 
salmon, studying the 30 most relevant DART‑HRMS signals, which were assigned to 
fatty acids. Aursand et al. (2009) used 13C‑NMR untargeted profiling of muscle lipids 
and multivariate analysis to discriminate between wild and farmed Atlantic salmon. 
Probabilistic neural networks (PNN) and support vector machines (SVM) provided 
excellent discrimination scores (98.5 percent and 100.0 percent, respectively). Fourier 
transform infrared spectroscopy (FTIR) has also been used as an effective tool to 
discriminate between farmed and wild seabass based on lipid composition (Vidal et al., 
2014). 

Isotopic fingerprinting through a compound‑specific stable carbon isotope analysis 
approach, focussing on amino acid δ13C profiling and multivariate analyses, allowed 
for accurate tracing of wild and farmed salmon, the latter from aquaculture in Norway 
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and Ireland. The δ13C profiles of essential and non‑essential amino acids demonstrated 
different potential regarding their source diagnostic abilities (Wang et al., 2018). 

The trace element profile in otoliths of fish, acquired by inductively coupled 
plasma‑mass spectrometry (ICP‑MS), combined with chemometrics, has been used 
to separate farmed fish from wild western Mediterranean Sea stocks of seabass 
(Dicentrarchus labrax L.) and sea‑bream (Sparus aurata L.). Moreover, trace elements 
in otoliths allowed for the discrimination among wild fish stocks within each species 
(Arechavala‑Lopez et al., 2016).

The detection of the mislabelling of farmed salmonids as wild can be based on 
their carotenoid pigment profile. Astaxanthin is the natural carotenoid pigment 
in wild Atlantic salmon, while farmed fish contain canthaxanthin or synthetic 
astaxanthin, administered through the feed. This difference can be detected by 
thin‑layer chromatography (Craik and Harvey, 1987) or high‑performance liquid 
chromatography of a lipid extract (Megdal et al., 2009; Ostermeyer and Schmidt, 2004). 

Vibrational spectroscopy is gaining attention for its non‑destructive and rapid 
profiling potential to discriminate between wild and farmed fish and other seafood. 
Rapid differentiation of wild and farmed European seabass (Dicentrarchus labrax L.) 
has been accomplished by near infrared spectroscopy coupled with chemometrics 
(Ghidini et al., 2019a). Machine learning‑assisted near‑ and mid‑infrared spectroscopy 
has also been used for the rapid discrimination of wild and farmed Mediterranean 
mussels (Mytilus galloprovincialis). The best discrimination was observed using 
Fourier transform mid‑infrared spectroscopy spectra of the interior part of mussels 
(Ayvaz et  al., 2024). Near‑infrared reflectance spectroscopy (NIRS) and several 
machine‑learning algorithms for both regression and classification tasks were explored 
by Gonçalves et  al. (2021) to discriminate between farmed and wild samples of 
Alaskan pollock (Gadus chalcogrammus), Atlantic cod (G. morhua), European plaice 
(Pleuronectes platessa), common sole (Solea solea) and turbot (Psetta maxima), showing 
accurate classification of 88 percent.

7.4 	 METHODS FOR THE VERIFICATION OF THE GEOGRAPHICAL 
PROVENANCE OF FISH

In many countries, it is mandatory to declare the geographical origin of fishery products 
(EU, 2013). This applies to the fishing area for wild‑caught fish and to the harvesting 
area and country of origin for aquaculture products. Particularly for wild‑caught 
fish, illegal fishing in areas with catch restrictions can affect biodiversity and overall 
sustainability. Moreover, there are fishery products with a protected designation of 
origin (PDO) or protected geographical indication (PGI) (EU, 2025), for which there is 
also an additional interest in control from the producers’ side. Finally, the geographical 
designation can be important for excluding an origin with a polluted environment or a 
region where ciguatera‑producing algae occur (Mudge et al., 2023).

7.4.1 	 Stable‑isotope analysis
Stable‑isotope ratio analyses of light mass elements (C, N, S, O, H) are reliable and 
proven methods for verifying the provenance of fish. Isotope ratios can be analysed by 
mass spectrometry in either bulk tissue or specific compounds. Different environmental 
conditions result in distinct stable isotopic signatures, primarily of carbon (δ13C) and 
nitrogen (δ15N), being incorporated into biological tissues. During this process, the 
heavy isotopes of these elements become enriched in the food chain. Similarly, the 
other elements can provide valuable information about the fish’s habitat and isotopic 
environment. For example, oxygen isotopes (δ18O) allow conclusions to be drawn 
about sea temperatures for marine fish, or the geographically varying signature of 
precipitation water in freshwater fish.
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The combination of δ13C and δ15N in muscle tissue has been widely used to 
distinguish the geographical origin of various commercial fish species, such as 
mackerel, yellow croaker and pollock (Kim et al., 2015), as well as hake (Carrera and 
Gallardo, 2017), from different oceans. With the help of δ13C and δ15N data, isoscapes 
of pelagic fish and squid in the Northwest Pacific Ocean could also be derived, which 
show distinct spatial patterns across marine areas (Ohshimo et al., 2019). In addition 
to δ13C and δ15N, δ34S has also been used to trace the geographical origin of Atlantic 
cod (Wilson et  al., 2024). Using linear discriminant analysis, some regions could be 
distinguished with strong predictive power (for instance, >90  percent), but an exact 
assignment of unknown samples across all examined marine areas was possible in only 
about 25 percent of cases.

The combination of δ13C, δ15N and δ18O in fillets was found to be effective 
in geographically differentiating Australian Murray cod from several Australian 
freshwater aquaculture sites (Turchini et  al., 2009). The C and N isotopes reflected 
the feed, while the O isotopes reflected the culture water. In contrast to seawater, 
freshwater is strongly influenced by geography and its properties, such as the isotopic 
signature of precipitation and evaporation. It has been shown that the regional 
variation in freshwater isotope signatures can also be used to differentiate between fish 
from individual lakes and farms in Switzerland using δ18O of their tissue water (Rossier 
et al., 2014). 

Although δ18O in seawater shows only minor global variations of approximately 
0.0 ± 1.0 ‰ in typical fishing areas, oxygen isotopes analysed in carbonate biominerals 
of marine animals (δ18Obiomin) exhibit larger differences. Isoscapes for δ18Obiomin in fish, 
cephalopods and shellfish show global differences of approximately 0.0 ± 4.0 ‰ 
(Martino et al., 2022), which are primarily driven by the strong reciprocal relationship 
between δ18Obiomin and water temperature. Thus, analysing δ18Obiomin in otoliths from fish 
allows for a rough estimate or the exclusion of a wider geographical origin.

In addition, otoliths in fish can be used to determine stable strontium isotopes (δ87Sr) 
by multicollector inductively‑coupled plasma mass spectrometry (MC‑ICP‑MS), with 
these isotopes being determined by the geological characteristics of the catchment 
area, particularly in freshwater systems. This way, several studies to determine the 
natal origins of salmonid fish, such as Pacific salmon (Barnett‑Johnson et al., 2008), 
Chinook salmon (Brennan et al., 2015) and Bering cisco (Padilla et al., 2015), were able 
to distinguish between different North American rivers using δ87Sr.

While the methods described so far involve analysing stable isotopes in bulk 
samples, it is also possible to conduct analyses at the individual molecular level by 
coupling isotope ratio mass spectrometry (IRMS) with gas chromatography. This 
compound‑specific isotope analysis (CSIA) can be used, for example, to determine 
δ13C in amino acids or monosaccharides. This made it possible to determine the 
geographical origin of sea cucumbers and Yesso scallops (Patinopecten yessoensis) 
(Zhao et al., 2018, 2019).

Scientists using MC‑ICP‑MS instrumentation have created further novel techniques 
and applications regarding determination of the geographical origin of different 
species as well as source assignment modelling of ocean pollutants. The MC‑ICP‑MS 
system is used to conduct high‑precision isotopic analysis of metals, metalloids and 
some non‑metals. Ocean‑science studies using species of commercial relevance have 
been conducted at small and large spatial scales to identify the geographical origin of 
individuals (Cransveld et  al. 2017; Bank et  al. 2024) and may be expanded to other 
species in support of seafood safety and provenance investigations. Cransveld et  al. 
(2017), successfully discriminated European seabass (Dicentrarchus labrax) using 
mercury isotopic values of δ202Hg and Δ199Hg, and bulk estimates of carbon and 
nitrogen isotopes, along with the SIBER package in program R to develop ellipses of 
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regional, isotopic niches. This approach successfully identified seven distinct seabass 
populations throughout Europe, highlighting the importance and potential of these 
methods to be applied at large spatial scales (for instance, throughout Europe). In a 
second case study, Bank et  al. (2024) successfully used a multi‑isotope composition 
approach. They analysed isotopes of lead, cadmium, copper, mercury, iron and zinc 
along with elemental composition to identify the geographical origin of brown 
crab (Cancer pagurus) at a small spatial scale using machine learning and Bayesian 
model‑selection techniques. Both techniques hold strong potential for supporting 
seafood‑fraud investigations where geographical origin and/or provenance needs to be 
assigned at small or large spatial scales. 

7.4.2 	 Stable‑isotope analysis combined with further techniques
To increase the accuracy of predictions regarding the geographical origin of seafood, 
it is best to combine isotope data with ancillary data from other analytical techniques. 
Data fusion enables a fingerprinting approach, which, combined with advanced 
statistical methods and machine‑learning techniques, has considerable additional 
potential. The combination of isotope data and element profiles, which can comprise 
both bulk and trace elements, is widely used. Element profiles provide an accurate 
reflection of the geological environment, including aquatic transport of materials and 
the influence of food chains.

Element profiles can be analysed using either ICP‑MS or x‑ray fluorescence (XRF). 
The combination of δ13C and δ15N of mussel tissue and trace‑elements contents of their 
shells has been shown to resolve the geographical origin of Mediterranean mussels 
within Europe, as well as those from Chile and Tunisia. Using a random forest model, 
only six variables (δ13C, δ15N, Pb, Ba, Mn, Al) were finally needed to correctly classify 
the mussels with an accuracy of 97 percent (del Rio‑Lavin et al., 2022). Similarly, the 
geographical differentiation of swimming crabs (Portunus trituberculatus) from three 
Chinese production areas was achieved by analysing δ13C, δ15N and element profiles 
in various tissues (Xu et al., 2022). Focusing on the profiling of lanthanide tracers in 
combination with δ13C and δ15N in the mantle tissue enabled the discrimination of 
different species and geographical origins of Mediterranean and Atlantic squid using 
classification and regression tree analysis (Varra et  al., 2024). Instead of ICP‑MS, 
elemental profiling using XRF analysis, in combination with isotope analysis of δ13C 
and δ15N, was applied in two Australian studies (Gopi et  al., 2019a, 2019b). Using 
discriminant analysis and random forest classification, the provenance of farmed and 
wild Asian seabass (Lates calcarifer) and that of black tiger prawns (Penaeus monodon) 
was determined with over 90 percent accuracy.

Data‑fusion techniques involving three independent sources were used to trace 
the geographical origin of sea cucumbers in China (Kang et  al., 2021). This study 
chemometrically combined elemental dry matter concentrations of C, N, O and H, 
their respective isotope ratios and mineral element concentrations in body‑wall tissue, 
achieving up to 100 percent accuracy. The provenance of blue mussels (Mytilus edulis) 
from China could be determined with 94 percent accuracy using explainable machine 
learning, by only combining isotopic and compositional data of C, N, O and H from 
mussel tissue (Kang et al., 2023). 

Another option for data fusion is the combination of stable‑isotope and fatty‑acid 
analyses. An exploratory study showed the potential of δ13C, δ15N and fatty‑acid 
profiles to trace the geographical origin of jumbo squid (Dosidicus gigas) using stepwise 
discriminant analysis (Gong et al., 2018). 

Table 3 provides an overview of different isotopic analytical techniques for verifying 
the provenance of fish.
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TABLE 3
 Isotopic analytical techniques for verifying the provenance of fish

 Technique  Taxon  Matrix  References

IRMS (CN) Fish, cephalopods Defatted tissue Kim et al., 2015; Carrera and 
Gallardo, 2017; Ohshimo 
et al., 2019

IRMS (CNS) Fish Dried tissue Wilson et al., 2024

IRMS (CNO) Fish Dried tissue Turchini et al., 2009

IRMS (O) Fish Tissue water Rossier et al., 2014

IRMS (O) Fish, cephalopods, 
shellfish

Otoliths, statoliths, shells Martino et al., 2022

MC‑ICP‑MS (Sr) Fish Otoliths Barnett‑Johnson et al., 2008; 
Brennan et al., 2015; Padilla 
et al., 2015

IRMS‑CSIA (C) Echinoderms, shellfish Dried tissue Zhao et al., 2018; Zhao et al., 
2019

MC‑ICP‑MS (Hg) Fish Dried tissue Cransveld et al., 2017

MC‑ICP‑MS 
(multi‑isotopic)

Crustacea Dried tissue Bank et al., 2024

IRMS (CN) and ICP‑MS 
(element fingerprint) 

Shellfish, crustacea, 
cephalopods

Dried tissue and shells (first 
two studies), dried tissue 

(third study)

del Rio‑Lavin et al., 2022; Xu 
et al., 2022; Varra et al., 2024

IRMS (CN) and XRF 
(element fingerprint) 

Fish, crustacea Dried tissue Gopi et al., 2019a; Gopi et al., 
2019b

IRMS (CNHO) and ICP‑MS 
(element fingerprint) 
and CHNO composition 

Echinoderms Dried tissue Kang et al., 2021

IRMS (CNHO) and CHNO 
composition 

Shellfish Dried tissue Kang et al., 2023

IRMS (CN) and fatty 
acids

Cephalopods Defatted tissue/lipids Gong et al., 2018

7.4.3 	 Non‑isotope‑based techniques
Chemical profiling by nuclear magnetic resonance (NMR) has been employed for 
seafood origin determination, often in conjunction with chemometric modelling. 
Heude et  al. (2016) used 1H‑NMR spectroscopy and chemometrics to study the 
specific metabolic profile of aqueous extracts of caviar samples and differentiate 
Aquitaine caviar production from other productions, supporting the establishment 
of the protected geographical indication (PGI) for Aquitaine caviar. Kuhn et  al. 
(2024) discriminated the origin of pikeperch (Sander lucioperca), European perch 
(Perca fluviatilis) and common bream (Abramis brama) from closely related water 
bodies (lakes and coastal sea regions), combining untargeted metabolomics by 
1H‑NMR spectroscopy with statistical analysis and machine learning. The origin 
prediction was tolerant to seasonal variations. 13C‑NMR spectroscopy, along with 
the machine‑learning tools probabilistic neural networks (PNN) and support vector 
machines (SVM) allowed for the differentiation of the geographical origin of Atlantic 
salmon from Canada, the Faroe Islands, Iceland, Ireland, Norway, Scotland and 
Tasmania, with correct classification rates ranging from 82.2 percent to 99.3 percent 
(Aursand et al., 2009).

Rapid screening methods based on non‑destructive, relatively low‑cost and 
environmentally friendly analytical techniques have also been employed for investigating 
the geographical origin of fish and seafood. Recent studies have demonstrated 
the potential of benchtop and portable near‑infrared spectroscopy equipment, in 
combination with chemometrics, to differentiate the geographical origin of oysters 

Notes: IRMS: isotope ratio mass spectrometry; CN: carbon and nitrogen; CNS: carbon, nitrogen and sulphur; CNO: carbon, 
nitrogen and oxygen; O: oxygen; MC‑ICP‑MS: multi‑collector inductively coupled plasma mass spectrometry; CSIA: 
compound‑specific isotope analysis; ICP‑MS: inductively coupled plasma mass spectrometry; XRF: X‑ray fluorescence; CHNO: 
carbon, hydrogen, nitrogen and oxygen.
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(Guo et  al., 2024), processed anchovies (Varrà  et  al., 2021), musky and common 
octopuses (Varrà et al., 2022), sea cucumber (Apostichopus japonicus) (Guo et al., 2018), 
European seabass (Dicentrarchus labrax L.) (Ghidini et  al., 2019a) and tilapia fillet 
products (Liu et al., 2015).

7.5 	 METHODS FOR THE VERIFICATION OF ORGANIC AQUACULTURE 
PRODUCTION METHOD 

Seafood consumers are often concerned about whether farmed fish is organic or not. 
Designation and certifications as organic vary by country, and definitions can also vary 
substantially, often driven by the composition and certification process of the fish feed 
and procedures used to grow the fish. Organic feed uses all‑natural plant and animal 
ingredients and is produced without using synthetic substances such as pesticides, 
herbicides, antibiotics, or genetically modified organisms (GMOs). This is especially 
important as there has been a significant rise in organic aquaculture (Beg et al., 2024) 
and a growing interest in sustainable food choices. To date, research on this topic is 
lacking, although there are increases in attention toward these topics, as expressed by 
both scientists and policymakers (Perdikaris and Paschos 2010; Mente et  al., 2011;  
Beg et al., 2024). 

A literature review by Beg et al. (2024) summarized the prospects and challenges of 
organic aquaculture to meet sustainability goals. The review reported that consumers 
often lack a detailed understanding of the principles of organic food, and that 
regulations are especially difficult to apply consistently (Beg et al., 2024). Organically 
farmed fish is often perceived as healthier and of higher quality; and labelling 
conventionally raised fish as organic is considered a fraudulent practice. Differences 
in feed and nutrition are expected to result in differences in the quality of products of 
organic aquaculture, but this research area of seafood fraud is truly in its infancy and 
can be considered a significant knowledge gap, especially in terms of reliable analytical 
methods to differentiate organically raised from conventionally farmed fish. Future 
investigations should consider novel techniques and applications aimed at identifying 
organic seafood and may benefit from lessons learned from land‑based food systems. 
Figure  1 illustrates the conceptual model and framework of organic aquaculture 
developed by Beg et al. (2024).

Stable‑isotope and fatty‑acid profile analyses have been employed to authenticate 
raw, smoked and graved organic salmonids. δ15N and non‑lipid δ13C levels were 
significantly higher in organic salmon and trout than in conventionally farmed fish. 
Using δ15N and lipid δ13C even allowed the distinction of organic from wild salmon 
at the same time. Regarding fatty‑acid profiles, the linoleic‑acid content of organic 
salmon clearly ranged between wild and conventional levels, while organic trout 
was differentiated from conventional trout based on oleic and gondoic acid content 
(Molkentin et  al., 2015). Compound‑specific carbon stable isotope analysis and 
multivariate statistical processing of the amino acid δ13C allowed for the discrimination 
between wild and organically raised salmon with high accuracy (Wang et al., 2018). 

Stable‑isotope analysis in several shrimp species allowed for the differentiation of 
organic and wild‑caught animals using δ15N and Δδ13C, where Δδ13C is the difference 
in δ13C between the lipid and non‑lipid fraction. However, when using Litopenaeus 
vannamei, this combination successfully discriminated only between organically and 
conventionally farmed shrimps, but not between conventionally farmed and wild. 
Moreover, this species clearly showed higher content of the saturated fatty acids C15:0 
and C17:0 in organic compared to conventionally farmed animals (Ostermeyer et al., 
2014).
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FIGURE 1

Conceptual model and framework of organic aquaculture

This section describes the important entities for consider-
ation when to practicing organic production in aquaculture.

9.1. Organic Farming Land. Organic aquaculture has been
established since 2000, but documentation of its land area
has been lacking. This article attempts to document the
organic fish farming areas of some countries and continents
from 2000 to 2017. The distribution of organic aquaculture
land worldwide has witnessed a notable surge, escalating from
less than a hectare to around 79,490 hectares by 2017 [101].
The area used for organic aquaculture was 23,930 hectares in
2010, 15,109 hectares in 2011, 33,844 hectares in 2012, 53,478
hectares in 2013, 43,222 hectares in 2014, and 31,279 hectares
in 2015 (Figure 5a). Globally, approximately 43,222 hectares
of aquaculture farms were dedicated to organic culture in
2014 [102]. In 2016, the organic aquaculture area expanded
to 71,972 hectares [103], and it reached 79,490 hectares in
2017 [104–106]. It is important to acknowledge that many
countries do not report nonagricultural organic areas. Conse-
quently, data on other areas, including organic agricultural areas,
may be incomplete after 2017, especially regarding aquaculture.
Although some area data on aquaculture is accessible, it is essen-
tial to recognize that it may not be exhaustive.

It is seen from the 2010 data that the majority of the
organic aquaculture land used was in Asia (19,461 ha), fol-
lowed by Latin America (4469 ha). In 2012, almost the same
trendwas followed byAsia (30,712ha), Latin America (3131ha),
and Europe (1ha)was followed. In 2013, the trend changed, with
Europe occupying the second position. Areas covered were
45,302ha, 5050ha and 3127ha in Asia, Europe, and Latin

America, respectively. In 2017, although Asia retained the top-
most rank with 69,406ha, the trend changed due to Africa occu-
pying the second position with 3600ha and Latin America
retaining its third rank with 934ha (Figure 5b). The information
provided is gathered from various sources, including the private
sector, certifiers, and governments [35, 35, 103–107]. The distri-
bution of organic fish farming land is presented in Figure 5c.

9.2. Volume of Production byDifferent Countries.Established in
2000, the IFOAM laid down the initial global organic aquacul-
ture criteria. Production figures show a steady rise from 2000
tons in 2000 to 5000 tons in 2002 and 10,000 tons in 2003
[101]. By 2005, global organic aquaculture production had
surged to 25,000 tons [31]. Notably, between 2000 and 2008,
production soared by 26.75 times, reaching 53,500 tons [72,
101]. This growth was fueled by 240 certified organic aquacul-
ture operations across 29 countries [35].

The total output of organic aquaculture remained nearly
unchanged in 2009 [72]. Contrarily, Xie et al. [15] noted a
substantial surge in the total production of organic aquacul-
ture in 2012, reaching around 85,000 tons, where Europe
contributed 14,000 tons and Latin America produced 3000
tons. A subsequent report by Willer and Lernoud [103, 103]
indicated a further increase in total production to approxi-
mately 384,065 tons in 2015. Analyzing the data, organic
aquaculture production was predominantly concentrated in
Asia (80%) and Europe (20%). China emerged as the leading
producer with 304,065 tons, followed by Ireland with 31,227
tons and Norway with 16,600 tons in 2015.

BBiiooddiivveerrssiittyy
ccoonnsseerrvvaattiioonn

HHuummaann
rriigghhtt

EEccoossyysstteemm
sseerrvviicceess EEnnvviirroonnmmeennttaall

eennhhaanncceemmeenntt

SSoocciiaall
jjuussttiiccee

PPrroodduucceerr
bbeenneeffiittss

AAnniimmaall
wweellffaarree

RReedduucceedd  iinnppuutt
ccoosstt

HHiigghh  mmaarrkkeett
pprriiccee

EEccoonnoommiicc
bbeenneeffiittss  

IInnccrreeaasseedd
iinnccoommee

EExxppoorrtt
eeaarrnniinngg

EEccoo--
llaabbeelliinngg

CCoonnssuummeerr
pprrootteeccttiioonn

CCoonnssuummeerr
aawwaarreenneessss

HHeeaalltthh
ssaaffeettyy

FFoooodd
qquuaalliittyy

CCoonnssuummeerr
aacccceeppttaannccee

PPrroodduucceerr
aawwaarreenneessss

EEnnvviirroonnmmeennttaall
aawwaarreenneessss

OOrrggaanniicc
aaqquuaaccuullttuurree

SSuussttaaiinnaabbllee
mmaannaaggeemmeenntt

SSuussttaaiinnaabbllee
lliivveelliihhooooddss

MMaaiinnttaaiinniinngg
eeccoossyysstteemm

DDiisseeaassee
pprrootteeccttiioonn

EEnnhhaannccee
ssooiill  ffeerrttiilliittyy

MMaannaaggeemmeenntt
wwaatteerr  qquuaalliittyy

FFIIGGUU
RREE

44:: OOrrggaanniicc aaqquuaaccuullttuurreeffaaccee
ss

mmuullttiiddiimmeennssiioonnaa
ll

aapppprrooaacchheess..

10 Aquaculture Research

 are, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2024/5521188 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [22/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Source: Reproduced with permission under Creative Commons Attribution 4.0 International license. 
Beg, M.M., Roy, S.M., Ramesh, P., Moulick, S., Tiyasha, T., Bhagat, S.K., Abdelrahman, H.A. 2024. Organic 
Aquaculture Regulation, Production, and Marketing: Current Status, Issues, and Future Prospects—A 
Systematic Review. Aquaculture Research 1, 5521188. https://doi.org/10.1155/2024/5521188 

Xu et  al. (2017) compared computer vision and hyperspectral imaging systems 
along with chemometric and machine‑learning tools to rapidly differentiate organic 
and conventional fresh and chill‑stored aquaculture salmon fillets. The best prediction 
performance was observed when the analytical results of the hyperspectral imaging in 
the 400–1000 nm region were processed with the support vector machine (SVM) tool. 

7.6 	 METHODS FOR THE DETECTION OF UNAUTHORIZED OR UNDECLARED 
PROCESSING PRACTICES 

Fraud in the fisheries and aquaculture sectors can be linked to unauthorized or 
undeclared processing practices, such as treatment with carbon monoxide (CO); 
unauthorized or undeclared usage of additives, such as nitrates, nitrites, formaldehyde, 
or sulphites; or the addition of water and water‑binding agents to increase weight.

7.6.1 	 Detection of the treatment of fish with carbon monoxide
Fish may be treated with carbon monoxide (CO) at different stages, from fresh catch 
to slaughtering, distribution, pretreatment before storage, processing, or packaging. 
The purpose of this treatment is to enhance and prolong the red colour, by preventing 
discoloration caused by myoglobin and haemoglobin oxidation, and to reduce 
lipid oxidation. Treatment of fish rich in red muscle such as tuna (Thunnus spp.) 

https://doi.org/10.1155/2024/5521188
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and mahi‑mahi (Coryphaena hippurus) with filtered smoke generated from natural 
sawdust after the removal of undesirable taste and odour components, carcinogenic 
compounds and gases, is the dominant commercial technology. Fish may also be 
pretreated, packaged or stored in high concentrations of CO (Concollato et al., 2015). 
However, this practice is prohibited in several countries, mainly due to microbiological 
risks arising from masking fish spoilage, but also due to potential toxic effects of CO. 
Fraudulent use of CO can particularly compromise the safety of histidine‑rich fishes 
such as tuna, mackerel, sardine, herring and swordfish, as it can result in the formation 
of histamine from the oxidative decarboxylation of histidine (Djenane and Roncalés, 
2018).

Gas chromatographic and spectroscopic techniques are currently being used to 
detect the unauthorized or undeclared processing of fish with CO. 

7.6.1.1 	 Gas chromatographic methods
Gas chromatography (GC), coupled with flame ionization detection (FID) or with 
mass spectrometric (MS) detection, has proven very sensitive in quantifying CO 
residues in fish. 

In the GC‑FID technique, the components of the sample, after their separation in 
the GC column according to their physicochemical properties (such as their volatility), 
pass into a hydrogen/air flame, where they become ionized within the flame. The 
ions are then collected by electrodes, creating a small current that is converted into 
an electrical signal, which is measured. Chow et  al. (1998) successfully employed a 
GC‑FID system equipped with a reducing column after the main column to change 
CO to methane before entering the FID to determine the CO residue in tuna flesh. 
This approach improved the sensitivity by 200 times over that of using GC without a 
reducing column. 

GC‑MS allows for the accurate identification and quantification of the components 
of complex samples by separating them and measuring their mass‑to‑charge ratio. 
Headspace gas chromatography coupled with mass spectrometry (HS‑GC‑MS) 
involves the extraction of CO into a headspace vial and subsequent analysis of the 
headspace gas, allowing for more sensitive determination of CO in fish. Anderson 
and Wu (2005) employed this technique for the quantitative determination of CO in 
tuna and mahi‑mahi tissues. The difference between untreated and treated specimens 
was in the range of an order of magnitude. The same technique has been applied to 
improve the detection of the treatment of fish meat of tuna, yellowtail and tilapia with 
CO, which is not allowed in Japan. Through an interlaboratory study, it was revealed 
that the CO level of many samples of tilapia exceeded the regulatory maximum limit, 
which had not been observed when using an alternative method (Ohtsuki et al., 2011). 
The usage of a programmed temperature‑vaporizing (PTV) injector upon HS injection 
and the restoration of the GC column by oven temperature programming boosted 
the robustness of an HS‑GC‑MS method developed by Bartolucci et  al. (2010) for 
the determination of CO in tuna fish. The level of CO in treated samples differed 
markedly from that detected in the untreated ones. 

7.6.1.2 	 Spectrophotometric methods
A simple and rapid analytical tool for the quantitative determination of the adduct 
of CO with myoglobin (CO‑Mb) in tuna is provided by UV‑Vis spectrophotometry 
and analysis of electronic absorption spectra, particularly regarding the characteristic 
Soret band at 420  nm. However, comparison of the results with those obtained by 
HS‑GC‑MS revealed that the UV‑Vis spectrophotometric method underestimates 
the amount of total CO, as it mainly detects only CO bound to the iron (Fe) atom of 
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the haeme protein. Despite this limitation, the spectrophotometric method provides a 
low‑cost, rapid‑screening control approach (Droghetti  et  al., 2011; Smulevich et  al., 
2007). 

The HS‑GC‑MS and GC‑FID methods are more expensive and generally provide 
higher sensitivity and lower detection limits compared to spectroscopic methods. The 
selection of an appropriate method for the detection of treatment of fish with CO 
depends on the requested level of accuracy, rapidity, equipment availability and cost, 
as well as the screening or confirmatory purpose of the analysis.

7.6.2 	 Detection of the treatment of fish with nitrate or nitrite
Nitrates and nitrites are ubiquitously present in nature as part of the nitrogen cycle, 
and they occur in all organisms as part of the endogenous nitrate‑nitrite‑nitric 
oxide pathway. They are also considered environmental contaminants, emitted from 
industrial, agricultural and urban activities. Sodium and potassium nitrates and nitrites 
are authorized food additives in some food categories for preservation purposes 
and for the fixation of colour and flavour – at specified maximum permitted levels. 
Their antibacterial action is attributed to the formation of nitric oxide following the 
progressive conversion of nitrates into nitrites (Vlachou et  al., 2020a; 2020b). The 
enhancement of red colour is attributed to nitric oxide, formed through the acidic 
treatment of nitrite, which binds as a ligand to myoglobin (Niederer et  al., 2019). 
Excessive levels of nitrate or nitrite in food may induce adverse health effects, mainly 
from nitrite, due to haematological and cardiovascular effects and the potential for 
the formation of carcinogenic nitroso compounds. Nitrate is considered of concern 
because of its reduction into nitrite. According to European legislation, only sodium 
and potassium nitrates can be used as additives for processed fish and fishery products, 
and specifically only in pickled herring and sprat. Additionally, their usage must 
be declared on the product label, in accordance with Regulation (EC) 1333/2008  
(EU, 2008) and Regulation (EU) 1169/2011 (EU, 2011).

Detection of unauthorized or undeclared usage of nitrate or nitrite salts as 
preservatives in fish can be implemented with a variety of tests. The interpretation 
of the analytical results may be challenging and should consider nitrate and nitrite 
background levels because of their natural occurrence or because of environmental 
contamination.

7.6.2.1 	 Colorimetric and spectrophotometric methods
The Griess test is a rapid, low‑cost test to detect the presence of nitrite ions in food. 
Detection is based on the formation of a red‑pink colour of diazonium salts formed 
by the treatment of aromatic amines with nitrous acid produced by nitrite under acidic 
conditions. Nitrates can also be detected, after their reduction into nitrites on a cadmium 
column. Calculation of the nitrate concentration is then obtained by the difference. 
Quantification of nitrates and nitrites can be obtained by spectrophotometry (Sen and 
Donaldson, 1978; Moorcroft et al., 2001). 

7.6.2.2 	 Chromatographic methods
Gas chromatography coupled with flame ionization (FID) and electron capture 
detection (ECD) has been used by Toyoda et  al. (1978) for the determination of 
nitrate in fish sausage and in cod and salmon roe. Nitrite was oxidized to nitrate with 
permanganate in the presence of sulphuric acid and chromatographed as nitrate. Sasaki 
et  al. (2018) quantified nitrite in fish by liquid chromatography with UV detection 
after the extraction and clean‑up of the samples by dialysis in a tris hydroxymethyl 
aminomethane solution.
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Chiesa et  al. (2019) developed methods for the determination of nitrate in 
seafood (fish, shrimp and bivalve species) based on ion chromatography with 
suppressed conductivity. Significant differences in nitrate concentrations were observed 
between farmed and wild seafood species, with the highest concentrations found in 
smoked‑salmon samples. Nitrite was not detected in any sample.

Headspace‑gas chromatography‑mass spectrometry (HS‑GC‑MS) was employed 
by Niederer et al. (2019) in a study that revealed that 45 percent of all tuna samples that 
were taken from the Swiss market had been illegally treated with nitrite. The method 
is based on the two‑step reduction of nitrite to nitric oxide, which is then reduced to 
nitrous oxide. The method was validated using 15N labelled nitrite as well as treated 
and untreated reference fish samples. 

7.6.3 	 Detection of the treatment of fish with formaldehyde
Illegal treatment of fish and seafood with formaldehyde to extend their shelf life is 
a common problem reported in many countries. Low levels of formaldehyde may 
occur in fish muscle as a product of the endogenous trimethylamine oxide (TMAO) 
degradation pathway. Endogenous production of formaldehyde can increase due to 
improper storage conditions (Jinadasa et al, 2022). However, excessive occurrence 
raises health concerns, as formaldehyde has been classified as a Group 1 carcinogen by 
the International Agency for Research on Cancer (IARC, 2006). 

7.6.3.1 	 Titration
The classical sulphite titration assay for the analysis of formaldehyde has been further 
developed in paper‑based analytical devices. Formaldehyde reacts with excess sulphite, 
and the generated sodium hydroxide is quantified on the device using acid‑base 
titration with sulphuric acid and phenolphthalein as the indicator (Taprab et al., 2019; 
Tasangtong et al., 2022). Microwell plate titration with fabrication‑free, ready‑to‑use 
plates allowed for easily portable semiquantitative onsite analysis of formaldehyde in 
shrimp, squid, oyster and jellyfish in Thailand (Tongdee et al., 2024).

7.6.3.2 	 Colorimetric and spectrophotometric methods
Digital image colorimetry has been used for rapid and low‑cost detection of 
formaldehyde in fish and squid samples, using a biodegradable colorimetric film. The 
detection was based on the entrapment of colorimetric reagents within a thin film of 
tapioca starch and the formation of a yellow reaction product (Wongniramaikul et al., 
2018). 

Spectrophotometry has been employed to quantify formaldehyde residues in 
formalin‑treated farmed olive flounder (Paralichthys olivaceus) and black rockfish 
(Sebastes schlegeli) after bath treatment with formalin. This method included a 
wet‑chemistry sample‑preparation procedure, and the absorbance of the violet 
colour was read at 550 nm (Jung et al., 2001). A rapid, simple, multisample method 
was developed by Weng et  al. (2009) for detecting formaldehyde using a heated 
(polydimethylsiloxane) microfluidic chip with multiple reaction reservoirs and 
measuring the absorption rate at 410 nm.

7.6.3.3 	 Sensors
Sensor technology provides rapid, low‑cost detection of hazards in food, opting for 
onsite measurement. A variety of sensing technologies to determine exogenous and 
endogenous formaldehyde levels in fish have been developed to reveal illicit addition or 
improper storage. Sensing mechanisms are based on small fluorophores, nanomaterials, 
polymers, or metal frameworks (Roy et al., 2024). 

Rapid onsite analysis of trace formaldehyde in squid and shrimp samples has been 
achieved by surface‑enhanced Raman spectroscopy (SERS) after purge‑sampling and 
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derivatization steps. Au/SiO2 nanoparticles were employed for enhancing the Raman 
signal intensity (Zhang et al., 2014).

An electrochemical sensor allowed for fast and reproducible quantification of 
formaldehyde in Malabar red snapper (Lutjanus malabaricus) and longtail tuna 
(Thunnus tonggol) with the differential pulse voltammetry (DPV) method. The 
analytical system set‑up comprises the usage of an ionic liquid, gold nanoparticles, 
chitosan and glassy carbon electrodes. Methylene blue was used as a redox indicator 
to increase the electron transfer in the electrochemical cell. The developed biosensor 
measured the nicotinamide adenine dinucleotide electron from the NAD+ reduction at 
a potential of 0.4 V (Noor Aini et al., 2016).

Based on the ability of formaldehyde to alter laser light reflection properties in 
contaminated food samples, Yasin et al. (2019) developed a fibre‑bundle sensor, which 
allows the non‑destructive detection of formaldehyde in snapper and the gourami fish 
in Indonesia, employing red laser light at 630 nm.

7.6.3.4 	 Chromatographic methods
Wahed et al. (2016) used HPLC for the detection of formaldehyde in fresh fish and fish 
feed collected from local markets in Bangladesh. 

Gas chromatography coupled with mass spectrometry (GC‑MS) has been employed 
for the determination of formaldehyde in 12 species (sea fish, freshwater fish and 
crustaceans), following sample preparation with solid phase microextraction and fibre 
derivatization with pentafluorobenzyl‑hydroxyl‑amine hydrochloride. Fish belonging 
to the Gadidae family exhibited the highest formaldehyde concentration (Bianchi et al., 
2007). Separation of formaldehyde with a MoO3 /polypyrrole intercalative sampling 
adsorbent and consecutive measurement with GC‑MS allowed for the quantification 
of formaldehyde at trace levels in aquatic products (Ma et al., 2015).

7.6.3.5 	 Spectroscopic methods
Infrared and near‑infrared spectroscopy can be used to detect formaldehyde in fish. 
Detection is based on observed changes in the infrared spectrum of treated fish 
samples, particularly in spectral regions related to protein structure. A Tri‑step IR 
method combined with partial least squares (PLS) regression analysis has been proven 
suitable for the quantitative determination of formaldehyde in squid (Gu et al., 2017). 
Ellegaard Bechman and Jørgensen (1998) determined formaldehyde in the skin of 
115 thawed, whole Atlantic cod samples with a combination of the evaluation of 
near‑infrared diffuse reflectance spectra and PLS regression.

7.6.4 	 Detection of the treatment of fish with sulphur dioxide or sulphites
Sulphur dioxide and sulphites are used as food additives due to their antibacterial 
activity and technological functions, including bleaching and colour enhancement. 
For example, they have long been used as a treatment to prevent prawn and shrimp 
melanosis (blackspot) (Bonerba et al., 2013). Inhalation and oral or dermal exposure to 
sulphur dioxide and sulphites can induce hypersensitivity (immunologically initiated 
– allergy) and intolerance (non‑immunologically triggered – pseudo‑allergy) reactions, 
manifested as respiratory, dermatologic, or gastrointestinal symptoms. Additionally, 
there is some toxicological evidence from animal studies that associates sulphite 
exposure with reproductive and developmental toxicity (EFSA, 2022).

In the European legislation, sulphur dioxide and sulphites as additives are 
prohibited in unprocessed fish and, in processed fish, they are only authorized in dried, 
salted fish of the Gadidae species. Sulphur dioxide and sulphites are authorized for 
usage in unprocessed (fresh, frozen and deep‑frozen) and in cooked crustaceans and 
cephalopods, in accordance with Regulation (EC) No 1333/2008 (EU, 2008).
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7.6.4.1 	 Distillation – alkali titration 
A commonly used protocol for the analysis of sulphur dioxide and sulphites in food 
is the Monier‑Williams method, which comprises extraction of SO2 by heating with 
phosphoric acid and the production of sulphuric acid in the presence of hydrogen 
peroxide. Sulphuric acid is then titrated against sodium hydroxide (Yamagata and 
Low, 1992; Hardisson et  al., 2002). This method, which does not require high‑cost 
laboratory equipment, has been successfully applied for the determination of the 
content of sulphite in prawns and shrimps (Williams  et  al., 1990; Hardisson et  al., 
2002).

7.6.4.2 	 Colorimetric methods
Ogawa et  al. (1979) obtained more rapid and sensitive sulphite quantification in 
shrimp using a modified distillation apparatus and replacing the alkaline titration 
with pararosaniline colorimetry, which also achieved higher recovery performance. 
Currently, commercial analytical systems exist, which use colorimetric test strips for 
semiquantitative sulphite analysis in food.

7.6.4.3 	 Polarographic methods
A differential pulse polarographic method developed by Holak and Patel (1987) applied 
a modified Monier‑Williams distillation with a strongly acid solution. SO2 is trapped by 
purging with an acetate buffer and then polarographed. The method has been proven 
suitable for analysing sulphites in shrimp, with recoveries comparable to those for the 
official Monier‑Williams method at high levels and with superior recoveries at low 
levels. Stonys (1987) also used the classical Monier‑Williams distillation followed by 
square wave voltammetry for quantifying sulphites in shrimp, a rapid approach that is 
very sensitive and specific for SO2. 

7.6.4.4 	 Distillation iodometry
This methodology involves the conversion of sulphites into sulphur dioxide, which 
is then transferred through steam distillation into a standard solution of iodine. 
After the redox reaction between the sulphur dioxide and the iodine is completed, 
the residual iodine is determined by redox titration, using a standard solution of 
sodium thiosulfate. Iodometric titration is preferred because it is more selective for 
sulphur dioxide and avoids interference from other volatile acids present in the sample  
(Vyncke, 1991; 1992). 

7.6.4.5 	 Chromatographic methods
Williams et al. (1990) developed analytical methods for the determination of the sulphite 
content in shrimps and prawns employing an HPLC system with electrochemical 
detection (ECD) fitted with a platinum electrode. The results were in close agreement 
with those obtained through the Monier‑Williams method. Additional advantages 
were shorter analysis time and a much smaller sample required. High‑performance 
liquid chromatography, coupled with fluorescence detection, was used to quantify the 
sulphur dioxide content in squid, after a derivatization reaction forming the fluorescent 
2H‑isoindole‑1‑sulfonate (Mu et al., 2022). Employment of the headspace gas‑liquid 
chromatography technique with flame photometric detection has quantified SO2 levels 
in shrimp, with results comparable to those obtained with the Monier‑Williams and the 
colorimetric techniques (Mitsuhashi et al., 1979).

The combination of a modified Monier Williams distillation with ion chromatography, 
coupled with conductivity or electrochemical detection, provided sensitive and selective 
sulphite determination in shrimp (Sullivan and Smith, 1985; Anderson et al., 1986). 
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A method developed by Iammarino et al. (2010), based on ion chromatography and 
suppressed conductivity detection, offers accuracy, precision, speed and automation, 
without the need of laborious sample‑preparation procedures.

7.6.4.6 	 Electrophoretic methods
A rapid method for the quantification of sulphites in seafood has been developed 
via capillary‑zone electrophoresis with indirect UV‑Vis detection. This method was 
successfully applied to quantify sulphites in shrimps from the Brazilian market and 
revealed illicit usage of sulphites in some samples (Gonçalves et al., 2020).

7.6.4.7 	 Flow injection analysis
Flow injection analysis offers rapid, accurate, low‑cost and automated determination 
of sulphite in food. The method is based on the decolourization of malachite green 
by SO2, which is extracted from shrimp with tetrachloromercurate (II) reagent and 
isolated from the flowing sample stream (Sullivan et  al., 1986; Ruiz‑Capillas and 
Jiménez‑Colmenero, 2009).

7.6.5 	 Detection of added water and water‑binding agents in fish and 
fishery products
Water is a natural constituent of fish. Although data on natural water composition are 
not available for all fish species, it is considered that the natural water content in fish 
fillets can vary from 55 percent to 82 percent, depending on species, habitat and diet. 
Water can be added to fisheries products during processing – chilled or deep‑frozen fish 
is usually covered with a protective glaze of ice. According to regulatory requirements, 
for example European Regulation (EU) No. 1169/2011 (EU, 2011), water content must 
be declared on the labelling. Loss of tissue water can occur, particularly in frozen, raw 
fish products. This is the rationale for the authorization of the usage of water‑binding 
additives, such as condensed phosphates. However, a common type of fraud is the 
addition of significant amounts of water to unprocessed fishery products, sometimes in 
combination with approved and non‑approved water‑binding substances, to increase 
product weight and profit. 

The assessment of added water in raw fish and fish products is complex. In 2024, 
the Fish and Fishery Products working group of the Working Group of Experts in 
the Field of Food Hygiene and Food of Animal Origin (Arbeitskreis der auf dem 
Gebiet der Lebensmittelhygiene und der Lebensmittel tierischer Herkunft tätigen 
Sachverständigen) of the German Federal Office of Consumer Protection and Food 
Safety issued a guideline entitled Addition of Water in Unprocessed Fishery Products 
– Evidence and Assessment Options (BLV, 2024). The guideline includes the following 
suggested parameters to be investigated in fish, crustaceans and molluscs:

•	 Sensory parameters in raw and cooked states. Comparison of appearance 
(morphology and water loss); consistency/haptics; taste and smell.

•	 Protein content and water/protein ratio. According to data from the literature, 
untreated fish fillets, as well as crustaceans and molluscs, contain between 
15 percent and 25 percent crude protein, depending on the species, physiological 
state and diet. Protein contents of 15 percent and less in lean fish fillets (fat content 
<2 percent) might indicate added water. An appropriate investigation approach 
for this purpose is laboratory analysis to calculate the water/protein ratio and 
compare it with in‑house or literature reference values based on authentic raw 
materials. If the calculated ratios for the respective sample under assessment are 
higher than those for untreated muscle, water addition can be assumed. 
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•	 pH value. Raw, untreated fish fillets typically have pH values ​​below 7.0. This 
also applies for crab and mollusc muscle, although slightly alkaline pH may 
be observed for some species. Water‑binding additives can result in changes in  
pH value. However, pH must be carefully considered along with the declared 
usage of acidifying or alkalizing substances. 

•	 Condensed phosphates, carbonate and citrate as water‑binding substances. 
These substances can be used in fish and fishery products, at various authorized 
levels, to prevent the loss of water from tissues, but they can also occur at low 
levels due to endogenous formation.

•	 Total ash or salt‑free ash. According to literature data, the total muscle ash 
content of fishery products is around 1 percent. Higher levels may indicate the 
addition of inorganic components, while lower levels can indicate dilution with 
the addition of water. 

•	 Sodium chloride and sodium content. Based on available literature, sodium levels 
in untreated fish muscle are in the range of 20 mg–160 mg/100 g, corresponding 
to NaCl contents of 0.1 percent to 0.25 percent. Typically, sodium and chloride 
ions are present in fish fillets in a stoichiometric ratio of approximately 1:1, 
which remains unchanged even when salt is used in the preparation. Excessive 
sodium levels can be detected in products treated with sodium salts (such as 
sodium citrate), suggesting the use of water‑binding additives. It is suggested 
that the sodium chloride content be evaluated based on the measurement of the 
chloride content. 

•	 Potassium content. Potassium levels in unprocessed fishery products are 
typically in the range of 100  mg–500  mg/100  g. Tissue damage caused by 
improper or repeated freezing can reduce potassium levels. A shift in the 
naturally expected sodium‑to‑potassium ratio in a sample, in addition to the 
absolute levels, is an indication of the use of sodium‑ or potassium‑containing 
substances (as ingredients or additives).

Paul et al. (2012) demonstrated that the consideration of sensory parameters was 
effective in revealing the adulteration of giant freshwater prawn (Macrobrachium 
rosenbergii) by injecting tripolyphosphate and materials such as pearl tapioca (sagu) or 
jelly (litchi) before freeze processing for increasing weight.

The official method for the quantification of seafood fat‑free protein is based on 
nitrogen determination and is also used to calculate nitrogen factors and to estimate the 
added water. Measurement of the nitrogen content can be done according to the classical 
Kjeldahl method or the rapid Dumas method, the latter measuring both protein and 
non‑protein nitrogen (Thompson et al, 2002; Analytical Methods Committee, 2014).

Water content can be determined in seafood by a reference method based on loss in 
mass obtained after mixing the test portion with sand and drying to constant mass at 
103 ± 2 °C (van Ruth et al., 2014). Nuclear magnetic resonance (NMR) has become a 
key analytical tool in fish authentication, including the water and protein content and 
water‑holding capacity (Erikson et al., 2004; Erikson et al., 2012). Recent research has 
focussed on non‑destructive rapid approaches for profiling water and protein in fish 
and seafood products. In a study from Xiaoyan et al. (2012), near‑infrared spectroscopy 
technology and support vector machine (SVM) were employed to estimate surimi 
moisture and protein. Spectral imaging and statistical tool combinations allowed for 
the quantitative measurement of moisture and fat content and their spatial distribution 
in fish fillets from different species (ElMasry and Wold, 2008).

Bisenius et al. (2019) treated cod fillets with phosphates, citrates and carbonates at 
controlled conditions to increase the water content and to investigate the impact of 
the treatment on various parameters of the final product. Phosphate and citrate levels 
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were quantified using ion chromatography and carbonate with gas chromatography. 
The temperature and the duration of the treatment influenced all investigated 
parameters. Additionally, sensory aspects were additive dependent. Triphosphate, 
hydrogen carbonate, and the mixture of citrate and hydrogen carbonate showed the 
highest potential for water binding, while citric acid may not be appropriate as a sole 
water‑binding substance. Adding food additives leads to changes in the pH value 
of fish meat. Treatment with hydrogen carbonates or triphosphate shifted the pH 
to the alkaline side, but the effect was clearer with carbonates. Thus, a fillet treated 
with hydrogen carbonate can easily be distinguished from an untreated one simply 
by measuring the pH. Additionally, Bisenius et  al. (2019) reported that increases in 
pH often led to higher water content in fillets, and that treatment with citric acid 
induced the lowest pH. The authors also concluded that several parameters should 
be collectively considered to detect added water in fish products. The pH, the  
water/protein ratio and the p value (p  value  =  (P2O5(%)*100)/(protein(%)) can be 
important indicators for the usage of additives, especially for carbonates and phosphates.  
To assess compliance with legal requirements and facilitate the assessment of added 
water and food additives, the knowledge of natural background levels of citrate, 
phosphate and carbonate – compounds that are part of the fish metabolism – is 
imperative. Furthermore, in a subsequent investigation, Bisenius et al. (2020) created 
reference values for water, protein and fat content of herring and cod fillets from 
different FAO fishing areas and quantified the naturally occurring carbonate and 
monophosphate contents in untreated fish fillets.





7171

CHAPTER 8

Case studies of food fraud in the 
fisheries and aquaculture sector

Case study 1. Species identification by molecular tools in 
mussel products sold in the Italian market: major issues 
and future challenges

INTRODUCTION
FishLab (at the Department of Veterinary Sciences of the University of Pisa) was 
consulted by a wholesaler to solve an authentication issue concerning a batch of 
precooked frozen mussels labelled “Chilean mussels” (Mytilus chilensis). Indeed, the 
samples of the batch had been differently molecularly identified by two external labs: 
the first identified them as M.  chilensis, using the 16Sr RNA gene as the molecular 
target, and the second identified them as Choromytilus chorus, using the COI gene. The 
COI gene was selected by FishLab for the analysis to compare their results with those 
previously obtained, even though, according to the literature (Larraín et  al., 2018), 
the mitochondrial genes are not suitable for the identification of species belonging to 
Mytilus spp. The 16Sr RNA gene was not considered given its even lower interspecies 
variability degree. Additionally, the polyphenolic adhesive protein (PAP) gene, a 
nuclear marker reported as more suitable for Mytilus spp. identification, was considered 
and, as expected, the analysis allowed for the identification of samples at only the genus 
level (Mytilus spp.) using the COI gene. The PAP amplification results suggested the 
presence of Chilean mussel and/or Mediterranean mussel by electrophoretic run, 
based on the length of the fragments. However, based on the Phred quality score, the 
PAP sequences were not considered reliable, and a species‑level identification was not 
achieved (Giusti et  al., 2020) FishLab decided to further investigate this topic and, 
in collaboration with Italian zooprophylactic institutes (official laboratories of the 
Ministry of Health), conducted a study applying a PCR‑RFLP technique proposed 
by Santaclara et al. (2006) to market products (including some samples of the batch 
previously analysed). Correspondence with label information was also verified. The 
PCR‑RFLP identified 47.2 percent of the products as Chilean mussel, 36.1 percent as 
Mediterranean mussel, 8.3 percent as a mix of pure species and hybrids, and 8.3 percent 
as hybrids. The labelling of all the products was compliant with labelling legislation in 
force in the European Union (Giusti et al., 2022).

THE CASE IN THE LITERATURE
Morphological identification in mussel specimens is challenging due to phenotypic 
plasticity, and it is often impossible in processed shelled products, encouraging illegal 
practices of species substitution. In addition, hybridization between mussel species 
is reported in geographical areas where two or more species coexist (Larraín et  al., 
2018.). In the European Union, hybrids Blue mussel (M. edulis) x Mediterranean 
mussel and Blue mussel x Pacific blue mussel (M. trossulus) are reported along the 
Atlantic coast and in the Baltic Sea, respectively. In Chile, hybrids Chilean mussel x 
Mediterranean mussel, Chilean mussel x Pacific blue mussel and Chilean mussel x Blue 
mussel have been detected (Giusti et al., 2022). Molecular studies identifying species 
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in mussel‑based market products are scarce probably because the mitochondrial 
molecular targets used as a standard for seafood authentication are ineffective. In 
addition, mislabelling (that is, label non‑compliance with law dispositions) has rarely 
been evaluated in the literature. However, Colihueque et al. (2020) recently highlighted 
a 50 percent mislabelling rate in products labelled Chilean mussel that were identified 
instead as black mussel (Aulacomya atra). In another study, authors detected one 
clear mislabelling case: a product sold in the Portuguese market as Chilean mussel 
but identified as Choro mussel (Choromytilus chorus) (Harris et al., 2016). However, 
mislabelling data could be underestimated; on the one hand because there is insufficient 
data to produce useful estimates on mislabelling rates for all the invertebrate categories, 
and on the other hand probably due to issues in selecting the proper molecular targets 
for the identification of Mytilus spp. In this respect, a recent systematic review and 
meta‑analysis investigating the mislabelling rate in seafood sold on the Italian market 
highlighted that this taxon is still insufficiently analysed to provide informative data 
(Giusti et al., 2023b). 

SCALE AND GLOBAL INCIDENCE OF THE CASE
Mussels (Bivalvia) are commercially relevant products in the European Union. The 
blue mussel and the Mediterranean mussel are the species mainly consumed and 
produced in the European Union, covering 85  percent of mussel production in 
2018. A large part is consumed fresh, frozen, or canned; but processed, ready‑to‑eat 
products are also increasingly present on the market (Avdelas et al., 2021). More than 
90 percent of the national production takes place in Emilia‑Romagna, Veneto, Apulia, 
Friuli‑Venezia‑Giulia, Sardinia and Liguria, and Mediterranean mussel is the main 
species produced. The production of this species, which is mainly sold fresh in Italy, 
is however not enough to meet the national consumption demand. Italian imports of 
mussels, mainly from Spain and Chile, reached 73  066 tons in 2017. Mediterranean 
mussel, blue mussel and Chilean mussel are the most‑consumed species, with 
Mediterranean mussel and blue mussel produced in European Community waters 
and Chilean mussel imported from Chile. Mussels make up about three‑fourths of 
Spanish aquaculture production, and Spain is by far the main producer and exporter of 
Mediterranean mussel, while, at the international level, Chile has recently become the 
world’s second‑largest producer and exporter of farmed mussels (after China). Chilean 
production is mainly based on the native blue mussel, although other Mytilidae species 
are also farmed, such as blue mussel, black mussel and choro mussel (FAO, 2022a; 
Avendaño et al., 2017). 

PUBLIC‑HEALTH ASPECTS AND OTHER IMPLICATIONS
Mussels are filter‑feeding organisms that have the potential to accumulate and 
concentrate a variety of marine toxins and pollutants into their flesh and can therefore 
pose a health risk to human consumers. Therefore, for human protection and as 
required by law, European Union Member States are obliged to conduct routine 
analyses from shellfish‑harvesting sites (Commission Implementing Regulation,  
EU 2019/627). Tetrodotoxins (TTXs), a group of potent neurotoxins named after the 
Tetraodontidae fish family (puffer  fish), have also been reported in bivalve molluscs 
farmed in the Pacific area and, recently, in European Union seas. Since 2015, several 
cases of TTXs shellfish contamination have been reported in Greece, the Kingdom 
of the Netherlands, Spain and the United Kingdom. More recently, the presence of 
TTXs was identified in mussels from Italian waters. In response to this, the European 
Union Food Safety Authority determined that a concentration of TTXs below 44μg/kg 
TTXs in shellfish meat, based on a large portion size of 400 g, would not entail adverse 
effects in humans (EFSA, 2017). Considering that mussels harvested in the European 
Union are subject to stricter control compared to products harvested outside the  
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European Union, the species may in part represent a sort of guarantee of security. 
Thus, the availability of analytical tools for verifying mussel traceability are necessary 
also in light of protecting consumer health in the face of such emerging risks. 

TOOLS TO PREVENT THE ISSUE 
The European Union has given great importance to guaranteeing that consumers make 
informed choices in relation to the food they consume and to preventing misleading 
practices. Therefore, appropriate methods are needed to deal with this issue. Recently, 
a collaboration with the Istituto Zooprofilattico Sperimentale della Lombardia e 
dell’Emilia‑Romagna, allowed for further optimization of a sequencing protocol for 
Mytilus spp. identification using the PAP gene. Tissue samples were collected directly 
from production sites in Chile or from national markets. Additionally, some DNA 
samples already identified by PCR‑RFLP in the above‑mentioned study were used. 
The target PAP region was amplified from all the samples (DNA and tissue). All PCR 
products were sequenced using the Sanger technique. Forty‑one  percent of tissue 
samples were randomly selected to perform the RFLP analysis to be compared to 
the sequencing results. Overall, the species identification by PCR‑RFLP failed for 
9.4 percent of tested samples. These findings suggest that the optimized protocol relying 
on Sanger sequencing has some practical advantages over PCR‑RFLP. Considering the 
decreasing costs of sequence‑based technology, this sequencing protocol is proposed 
as a valid, consistent and reliable alternative to the methods currently used. Also, the 
applicability of next‑generation sequencing technologies to species identification in 
mussels is under investigation.

The method should be further assessed in light of the new data through the 
production of a sufficient number of reference sequences from vouchered identified 
specimens. Indeed, database construction and validation represent the first step for all 
food‑authentication methods.

CONCLUSIONS AND RECOMMENDATIONS
The adoption of a problem‑solving approach to overcome unavoidable limitations 
of the DNA standard analytical procedures is required to ensure efficient support 
for the seafood‑traceability system (Tinacci et  al., 2018b). Accurate interpretation 
of analytical results and the choice of the appropriate methodological approach are 
pivotal to ensuring an adequate and objective technical opinion. Method reliability 
is even more important if the results are to be used as acceptable evidence in a court 
of law. Not least, from the perspective of knowledge transfer and of sharing methods 
with other laboratories, the analytical protocol should be set up in as affordable a 
manner as possible, since most laboratories have access only to basic molecular‑biology 
equipment. Despite the well‑known presence of hybrid specimens in the market, also 
confirmed by the outcomes of our analyses, no indication of this is provided on the 
labelling at the level of the European Union, nor do they appear in any official list 
of commercial designation published by the Member States. This aspect, in addition 
to hindering the implementation of strategic‑management plans aimed at preserving 
native populations and safeguarding the quality of aquaculture production, creates 
difficulties for food‑business operators in guaranteeing food transparency. In this 
respect, a revision of the European Union labelling system is recommended. Until 
then, in the context of official‑control or self‑control activities, it may be reasonable 
that, where one of the parental species involved in the inbreeding process is reported 
in the label, the product could be considered compliant. This would help official and 
private laboratories in interpreting results and issuing reports. Harmonizing taxonomy 
in the context of aquaculture production, traceability, labelling and trade of Mytilus 
products is more complex compared to other seafood products. However, at the state 
of the art, Chilean mussel and Mediterranean mussel should both be simply labelled 
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as “Mytilus sp. ‑ mussel”, also considering that the origin declaration is mandatory 
according to the current seafood‑labelling legislation, as established in Regulation 
(EU) No 1379/2013. In this way, consumers will be informed of the origin, even with 
the adoption of a more generic term. Moreover, considering the well‑known presence 
of hybrid specimens in the market, it may be advisable to extend this more general 
nomenclature also to blue mussel.

Case study 2. Species identification in complex seafood 
matrices (fish burger) in the age of metabarcoding

INTRODUCTION 
Complex seafood products (such as fish burgers, surimi, fillings, etc.) are particularly 
susceptible to fraudulent species substitution due to their nature, which makes it 
impossible to identify the species used as ingredients without relying on molecular 
analysis (Giusti et al., 2017). In the last few years, seafood companies have often asked 
FishLab, at the Department of Veterinary Sciences of the University of Pisa, to analyse 
these types of products by means of metabarcoding. This method involves using 
universal PCR primers to massively amplify one or more taxonomically informative 
targets, thus allowing for DNA barcoding in parallel, owing to next‑generation 
sequencing technologies (NGS). This demonstrates that food‑business operators 
(FBOs) are well inclined to include analyses relying on innovative molecular 
technologies in their self‑control systems. In this study, the fish burger was selected 
as a model to implement a metabarcoding workflow on the Illumina platform for 
the authentication of complex seafood products in an efficient, reliable and easily 
transferable manner. The entire workflow was structured by setting up and analysing 
each analytical step (from sampling to bioinformatic analysis and data interpretation), 
and experimental samples (positive controls, analytical blanks, replicates and samples 
processed out of the fume hood) were included to assess quality control throughout 
the process. Twenty‑four sample replicates from nine products declared as European 
seabass were processed, together with 16 experimental samples (total of 40 samples 
processed). A ≈200 bp region of the 16Sr RNA gene was selected as the molecular 
target. The sequencing was performed by an external company, and the data obtained 
were processed using the DADA2 R package. The taxonomic assignment was 
performed using Blastn (the NIH’s local alignment search tool for nucleotides) against 
GenBank (identity value ≥99percent). The total number of reads ranged from 25 006 
to 264 841. Differences in the number of reads are related to the fact that samples were 
sequenced in different runs. After the data processing, the percentage of maintained 
reads for each sample ranged from 73.8 percent to 96.8 percent. The sequences assigned 
to European seabass were highly predominant in all the products, with percentages 
≥99.34  percent, except for one, where also a high number of sequences assigned to 
Atlantic salmon were found (12.41 percent). Sequences identified with other species 
(seafood, mammals, insects) were ≤0.57  percent, and in 14  percent of the cases they 
did not achieve even 0.001 percent. A threshold value of 3.3 percent to remove false 
positives was fixed, based on the results of the positive controls. According to the 
interpretation of the results, the laboratory procedures contributed minimally to the 
presence of contamination, which instead seemed to originate from previous phases in 
the production chain. Overall, metabarcoding proved an effective technique to assess 
the ingredients contained in complex seafood products. However, further investigation, 
including a higher sample number and interlaboratory validation, should be performed 
to validate the procedure (Giusti, Malloggi, Lonzi et al., 2023b)
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THE CASE IN THE LITERATURE
Illumina‑based massively parallel sequencing, with its ability to simultaneously 
sequence all the DNA molecules in the same sample (including those present 
in trace amounts), represents the most promising analytical tool to authenticate 
complex seafood products that may contain a wide range of species (such as minced 
matrices composing burger, surimi, fillings, etc.) (Haynes et  al., 2019). Despite this, 
its application in foodstuffs is limited. On the contrary, in other fields of research, 
such as the analysis of biodiversity in environmental samples or the study of trophic 
interactions, metabarcoding is well developed and more widely used. This is probably 
linked to the lack of standardized protocols comprising the entire workflow (from the 
sampling to the final metadata interpretation), which can make the analysis complex, 
lengthy and costly, without guaranteeing reliable final outcomes, thus discouraging 
its application by laboratories. Recently, a systematic review was published to answer 
the question “Is the metabarcoding ripe enough to be applied to the authentication of 
foodstuff of animal origin?” (Giusti et al., 2024). The scientific papers were analysed 
with respect to the metabarcoding phases, namely library preparation, sequencing 
and final data analysis. In addition, the papers were scored based on the use of 
quality‑control measures (procedural blanks, positive controls, replicates, curated 
databases and thresholds to filter the data) (Giusti et al., 2024). It was observed that 
only 23 included papers were published since 2017. A lack of standardized protocols, 
especially with respect to the target barcode(s) and the universal primer(s), and the 
infrequent application of the quality‑control measures, indicate that metabarcoding is 
not ripe enough for authenticating foodstuff of animal origin, although the observed 
trend in quality improvement over the years is encouraging (Giusti et al., 2024)

SCALE AND GLOBAL INCIDENCE OF THE CASE
The global impact of food fraud is encouraging food companies to invest more in 
means and tools to prevent, manage and reduce this phenomenon. Cases of mislabelling 
involving complex seafood products are reported worldwide (Carvalho et  al., 2017; 
Giusti et  al., 2022). Moreover, the few available studies applying metabarcoding to 
complex seafood products found DNA from a very wide range of species, some not even 
seafood. This is of particular concern to FBOs, even more so because these products 
have currently won a large market share, following the demands of consumers who are 
increasingly seeking ready‑to‑eat and ready‑to‑cook products. The availability of an 
efficient and standardized metabarcoding protocol to detect fraudulent substitution in 
these products is required to reduce economic losses and guarantee maximum market 
transparency – a condition of consumer confidence. 

PUBLIC‑HEALTH ASPECTS AND OTHER IMPLICATIONS
The availability of an efficient molecular method to properly authenticate complex 
seafood products can also represent a tool to protect public health in case of the illicit 
presence of toxic species or the omission of potentially allergy‑causing ingredients 
(such as crustaceans and molluscs), as already reported in the literature. In this respect, 
the presence of undeclared cephalopods (molluscs) or avian DNA (probably related 
to the presence of eggs) in surimi‑based products and fish burgers is reported in the 
literature (Giusti et al., 2017; Mottola et al., 2022; Piredda et al., 2022). Moreover, the 
presence of mammalian or avian species, also already reported in the literature, can 
represent a critical point for consumer protection based on religious or ethical issues. 
Furthermore, the possible presence of human DNA or DNA from insect pests could 
also be addressed using metabarcoding to evaluate FBO compliance with hygiene 
criteria. Finally, transparency in the market is a crucial point in safeguarding marine 
environments from illegal fishing practices, and in preventing the recycling of bycatch 
or fish waste.
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TOOLS TO PREVENT THE ISSUE
Metabarcoding has been demonstrated to be an efficient tool for the authentication 
of complex seafood products. However, based on the outcomes of this study, further 
investigation should be performed in order to define standard operating procedures 
and harmonize protocols. Although the selected 16Sr RNA primer pair proved to 
be a good candidate for use with complex seafood products, additional performance 
tests on targeted species should be performed and the possibility of resorting to a 
multitarget/multigenic approach should not be excluded. In addition, the threshold 
value to exclude contamination should be further investigated considering factors such 
as the type of product, the species‑diversity index and, not least, the different affinities 
of the primer pair with respect to the target species.

CONCLUSIONS AND RECOMMENDATIONS
Many of the issues encountered in this study have already been highlighted in 
literature dealing with food authentication using metabarcoding, but there is a 
lack of methodological studies and systematic reviews addressing all these aspects 
together. Therefore, it is recommended that standard operating procedures be 
defined to overcome these obstacles. It is pivotal to harmonize protocols by adopting 
quality‑control measures that should be applied during the analysis. This, in turn, 
would allow for more extensive use of metabarcoding in the context of both official 
control by competent authorities and FBO self‑control, thereby increasing the 
capability to detect and deter food fraud. 

Case study 3. Fish mislabelling in Buenos Aires Province, 
the largest seafood market in Argentina

INTRODUCTION 
In recent years, the vulnerability of fish products to fraud has multiplied. The fishing 
sector is recognized as one of the sectors most exposed to fraudulent practices, and 
governments are aware of the need to improve systems to control traceability and 
labelling within the fish supply chain (Tamm et  al., 2016). However, the absence of 
policies governing fish and shellfish labelling and the improper application of such 
policies in some countries (Barendse and Francis, 2015; Miller et al., 2012; Xiong et al., 
2016), along with other aggravating factors, such as the increase in world trade of 
fish, particularly processed products (Armani et al., 2015) and the depletion of fishery 
resources (Marko et  al., 2004; Miller and Mariani, 2010), exacerbate this fraudulent 
behaviour. Proper food labelling is important for legal, health and environmental 
reasons. In addition, food‑safety concerns are driving the need for accurately labelled 
food products, especially fish products that are indistinguishable solely on the basis 
of their morphology, such as fillets. Substitution of fish species or mislabelling (for 
instance, using a trade name which does not correspond to the actual species used to 
make the product) has multiple effects. Seafood mislabelling and substitution can have 
a number of consequences for consumers and the environment, including economic 
loss due to potential commercial fraud (Carvalho et  al., 2017; Hanner et  al., 2011; 
Von Der Heyden et al., 2010), public health effects (Chang et al., 2008), uncontrolled 
impacts on threatened fish species (Ardura et al., 2011) and damage to populations due 
to overfishing (Tokeshi et al., 2013). 

THE CASE IN THE LITERATURE
Regarding economic issues, fishery products have shown high rates of species 
substitution, where species of higher commercial value are substituted with species of 
lower value, resulting in financial loss for the buyers and consumers. When a highly 
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prized species becomes overfished, retailers may be tempted to replace it with a 
common species of lower commercial value, resulting in commercial fraud (Pepe et al., 
2007). Fraudulent commercialization of fishery products has been reported in several 
countries in South America (Veneza et al., 2018), North America (Hanner et al., 2011), 
the European Union (Mariani et  al., 2015), Africa (Cawthorn et  al., 2012) and Asia 
(Chang et al., 2016) (Table 4). Some traders may deliberately use mislabelling as a means 
to launder illegally caught fish into legitimate markets, or simply to defraud consumers 
for the purpose of accruing greater profits (Ogden, 2008). It is very important to 
consider the effect of these practices on threatened species, since fish retailers may 
offer endangered species, or species prohibited for international trade, for sale. In 
fact, unsustainable fishing pressure has led to the decline of most shark populations, 
with some shark species facing extinction (Dulvy et  al., 2008; Ferretti et  al., 2008; 
Worm et al., 2013). These predators play a crucial ecological role in structuring marine 
ecosystems and food webs (Libralato et  al., 2006) and are commercially important 
for their meat (particularly their fins). Late maturation, low fecundity and longevity 
make sharks acutely vulnerable to overexploitation and prevent rapid recovery 
from overfishing (Stevens, 1999). Recent global catch assessments estimate that 
approximately 100  million sharks are landed annually, excluding IUU shark catches 
(Worm et al., 2013). 

TABLE 4
 Examples of substitution rates reported for fish fillets

Country Substitution 
rate (%) Taxonomic focus Detection method References

Argentina 21.3 Diverse DNA barcoding Delpiani et al., 2020

Brazil 17.3 Diverse DNA barcoding Carvalho et al., 2017

Brazil 22 Lutjanus purpureus DNA barcoding Veneza et al., 2018

Canada 41.2 Diverse DNA barcoding Hanner et al., 2011

Canada 41.2 Diverse DNA barcoding Hanner et al., 2011

France 3.7 Diverse DNA barcoding Bénard‑Capelle et al., 2015

Ireland 25 Cod DNA barcoding Miller et al., 2010

Ireland 28.2 Cod DNA barcoding Miller et al., 2012

Italy 32 Diverse DNA barcoding 
and Cyt. b

Filonzi et al., 2010

Italy 37.5 Diverse DNA barcoding Pappalardo and Ferrito, 2015

Italy 77.8 Mustelus sp. DNA barcoding Barbuto et al., 2010

South Africa 21 Diverse DNA barcoding Cawthorn et al., 2012

South Africa 50 Diverse 16S rDNA Von Der Heyden et al., 2010

South Africa 50 Diverse 16S rDNA Von Der Heyden et al., 2010

Taiwan Province of 
China

70 Diverse DNA barcoding Chang et al., 2016

(the) United 
Kingdom 

7.4 Cod DNA barcoding Miller et al., 2012

(the) United States 
and Canada

25 Diverse DNA barcoding Wong and Hanner, 2008

SCALE AND GLOBAL INCIDENCE OF THE CASE
Chondrichthyans are regarded as the most threatened marine fish group in the world 
(Davidson and Dulvy, 2017). Moreover, overfishing has a deep, negative impact on them 
due to their biological characteristics. In the Southwestern Atlantic, these species are 
subject to commercial fishing as an incidental capture and are also globally subject to 
commercial, artisanal and recreational fishing (Bornatowski et al., 2014; Chiaramonte, 
1998). In 2022, in Argentina, 406  751.8  tonnes of shark were landed (Ministerio de 
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Economía, n.d.). Hence, there is an urgent need for proper food labelling to safeguard 
against legal, health and environmental issues. Currently, several countries such as 
Brazil and South Africa, as well as the European Union, have legal frameworks and 
governmental regulatory programmes that require appropriate species traceability 
and labelling (Filonzi et  al., 2010; South Africa, 2010). However, no regulations for 
seafood‑product species identification exist in Argentina. In addition, until 2019, no 
studies of the potential substitution of high‑value fish species for those of lower value, 
which is a common practice in several countries, had been conducted in Argentina 
(Delpiani et al., 2020).

The evaluation of mislabelling in Argentina was carried out in three stages, resulting 
in three case studies: the first in coastal cities of the province of Buenos Aires; the 
second in the largest cities in the country; and the third in the coastal cities of Argentine 
Patagonia, thus covering the country’s entire coastline. The evaluation was performed 
on the coast of Buenos Aires, since 75 percent of the fishing fleet is in the ports of 
Buenos Aires (Mar del Plata, Puerto Quequén, Bahía Blanca and General Lavalle), 
representing 70 percent of the landing of marine fishes in Argentina. The area includes 
11 coastal cities of the Province of Buenos Aires (from north to south: San Clemente 
del Tuyú, Santa Teresita, San Bernardo, Pinamar, Villa Gesell, Mar del Plata, Miramar, 
Necochea, Claromecó, Monte Hermoso and Bahía Blanca), where 172 fish fillets were 
obtained, 164 of which could be sequenced, representing 28 species. Thirty‑five cases 
of mislabelling were found, indicating an overall substitution rate of 21.34  percent. 
Thirteen cases involved substitution with bony fish, and 22 of the replacements 
involved chondrichthyans.

TOOLS TO PREVENT THE ISSUE 
DNA barcoding is a powerful tool for rapidly determining the taxonomic group of a 
given organism. It can be used to discriminate between closely related taxa (Stoeckle 
et al., 2004), it is easily comparable across different studies (Cline, 2012), and it can be 
used as a universal tool for food traceability. DNA barcoding based on the mitochondrial 
cytochrome c oxidase I (COI) gene is used to identify patterns in the mislabelling of 
the fishery products (Munguia‑Vega et al., 2022). DNA extraction, PCR amplification 
and sequencing of the COI gene were carried out following standard DNA‑barcoding 
protocols as described by Ivanova et al. (2006, 2007). 

PUBLIC‑HEALTH ASPECTS AND OTHER IMPLICATIONS 
In Argentina, there is no regulation or enforcement measures to ensure accurate 
labelling of seafood species. The sale of substituted or inaccurately labelled seafood 
can lead to various consequences for both consumers and the environment. These 
consequences range from financial loss due to possible commercial deception (Hanner 
et al., 2011; Cutarelli et al., 2014; Pappalardo and Ferrito, 2015; Carvalho et al., 2017), 
to public‑health risks (Chang et al., 2008; Todd, 2011; Raimann et al., 2014), and to 
unregulated harm inflicted on vulnerable fish species (Stevens et al., 2000; Ardura et al., 
2010, 2011); this in addition to population declines caused by excessive fishing (Tokeshi 
et al., 2013).

Substitution or mislabelling may pose serious health threats due to the potential 
presence of toxic, allergenic, or unidentified harmful substances (Holmes et al., 2009; 
Ward et al., 2008; Wong and Hanner, 2008). Ambiguous labelling further complicates 
the ability of consumers to avoid species that are at greater risk of extinction or that 
may trigger specific health concerns. Of particular concern is the impact of such 
practices on endangered species, as some vendors might unknowingly or deliberately 
sell threatened species or those banned from international trade. In addition, by 
purchasing these products, consumers may unintentionally contribute to irresponsible 
marketing practices (Holmes et al., 2009; Wong and Hanner, 2008; van Leeuwen et al., 
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2009). This is especially relevant for chondrichthyan species (including sharks, rays, 
skates and chimaeras), nearly 25 percent of which are classified as threatened (Dulvy 
et al., 2014). Accurate labelling serves not only conservation and legal purposes but also 
consumer safety and public health (Delpiani et al., 2024).

CONCLUSIONS AND RECOMMENDATIONS 
Mislabelling can occur accidentally, probably linked to inaccurate morphological 
identification of fish, or it can be deliberate. The sale of southern eagle ray Myliobatis 
goodei as a skate species, or of the narrownose smooth‑hound Mustelus schmitii as 
tope shark Galeorhinus galeus, may be accidental mislabelling, most likely due to the 
resemblance between these chondrichthyan species. On the other hand, inaccurate 
common names are sometimes deliberately applied to species in an attempt to increase 
sales by making the product more appealing to consumers. For instance, the name 
pollo de mar (the local common name for elephant fish Callorhinchus callorhynchus, 
whose real common name is pez elefante; similarly, perita was used to identify the 
southern kingcroaker Menticirrhus americanus, instead of its proper vernacular name, 
burriqueta. The names salmonada, mora and vacío de mar were used for the black 
drum Pogonias courbina; palomito was used for tope shark; and palo rosado was used 
for narrownose smooth‑hound and for other sharks. The latter case causes confusion 
because narrownose smooth‑hound was sold in the market as palo rosado, which 
is its corresponding popular name, but the official common name is gatuzo. This 
problem also becomes visible in cases in which different species belonging to the same 
genus or family are grouped under the same common name (Barbuto et  al., 2010; 
Cawthorn et al., 2012), further diluting specific identification, such as happens with 
flounders, silversides or skates.

Another reason for mislabelling is the economic incentive of replacing higher‑value 
species with lower‑value species, as is the case in replacing cheeks of the pink cusk eel 
Genypterus blacodes (valued at USD 12/kg) with meat of the endangered spotback skate 
Atlantoraja castelnaui (valued at USD  3.80/kg) and the narrownose smooth‑hound 
(valued at USD  5.50/kg). In addition, tope shark (valued at USD  4.50/kg) is sold 
as Argentine seabass Acanthistius patachonicus, (valued at USD  9.60/kg); elephant 
fish (valued at USD  4.25/kg) and narrownose smooth‑hound are sold as yellow fin 
tuna (valued at USD 7.70/kg); and as Patagonian seabass A. acanthitius patachonicus 
(valued at USD 13) is sold as wreckfish Polyprion americanus (valued at USD 12.60/
kg). The percentage of mislabelling of fillets obtained in the study is comparable to the 
results obtained in other studies carried out in Brazil (Carvalho et al., 2017), North 
America (Logan et al., 2008; Marko et al., 2004; Wong and Hanner, 2008), South Africa  
(D.M. Cawthorn et  al., 2012) and the European Union (Barbuto et  al., 2010; 
Bénard‑Capelle et al., 2015; Filonzi et al., 2010; Miller and Mariani, 2010; Pappalardo 
and Ferrito, 2015), further demonstrating that this problem is widespread. According 
to the general results obtained, almost 70  percent of the replacements involved 
Chondrichthyes: mainly elephant fish, narrownose smooth‑hound, tope shark, 
spotback skate and angel shark S. Guggenheim being sold as something else. This 
pattern is somewhat predictable, as in all surveyed fish retailers, the same triad of 
species was consistently available: “tuna” (mainly Mustelus schmitti and Galeorhinus 
galeus), “chicken fish” (Callorhinchus callorynchus), and common hake (Merluccius 
hubbsi). While the first two are Chondrichthyes, the common hake represents the most 
heavily exploited fish species in Argentina. Therefore, the fact that these elasmobranchs 
are now being marketed alongside hake suggests that previously less exploited species 
are being increasingly targeted. This trend may indicate that their populations are 
becoming subject to unsustainable fishing pressure, potentially following a similar 
trajectory of depletion to that experienced by hake. The increasing trend observed 
in shark‑meat trade in many countries suggests that underlying demand for these 
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products, such as fins, fillets or shark oils, is increasing (Dent and Clarke, 2015). 
South Atlantic shark populations are facing intense fishing pressure (Barreto  et  al., 
2016), since market demand has now passed from fins to meat, which is sold as tuna. 
This can be seen clearly in the current case, since most fish substitutions were made 
with chondrichthyan species, mainly with sharks of the Triakidae family. Both the 
narrownose smooth‑hound and tope shark were used to replace several species, such as 
the yellowfin tuna, stripped weakfish Cynoscion guatucupa, pink cusk‑eel and Brazilian 
flathead Percophis brasiliensis. In addition, these sharks were the ones that received the 
greatest number of unofficial common names. Indeed, according to the International 
Red List of Endangered Species (IUCN, 2025), the tope shark, the narrownose 
smooth‑hound and the spotback skate are classified as “critically endangered” (Finucci 
et  al., 2020; Pollom et  al., 2020; Walker et  al., 2020), and their population trends 
continue decreasing. Finally, the elephant fish is classified as “vulnerable”, and its 
population trend is likewise declining.

Existing conservation measures in Argentina comprise closed areas and marine 
protected areas, a maximum allowable catch established annually by the Argentine 
fishing authorities, and a ban on landing sharks over 1.6 metres long, for commercial 
fishing vessels (Subsecretaría de Pesca y Acuicultura, 2020). However, much remains 
to be done to improve the effectiveness of these measures. Closed areas and marine 
protected areas do not systematically cover the different chondrichthyan assemblages 
found off the Argentine coast (Sabadin, 2019), and maximum allowable catch limits 
and the ban on landing large sharks are poorly enforced throughout the country. 
Consequently, approximately 47  percent of the chondrichthyan fauna of Argentina 
is considered to be at some of level of threat of extinction (vulnerable, endangered 
or critically endangered). Amendments to existing legislation should, at a minimum, 
include a requirement for the declaration on product labels of a designated “acceptable 
trade name” as well as the scientific name of the fish species being traded. An effort 
should be made to create a monitoring programme at the national level, to lead an 
intense focus on seafood certification. The government will also need to address the 
adequacy of the current regulations and monitoring processes. Fraudulent acts should 
be penalized according to the amount of mislabelling detected, as has been implemented 
in Brazil (Carvalho et  al., 2017). It is expected that this would greatly reduce the 
incidence of market substitution (Cline, 2012). If greater market transparency can 
be achieved, then public confidence in the Argentine seafood supply chain could be 
restored, and all efforts could be refocused on conserving ocean fish stocks. 

Case study 4. Genetic‑based identification of seafood 
mislabelling in restaurants, grocers and processing plants 
in Los Angeles, California

INTRODUCTION
Genetic‑based DNA barcoding is a well‑vetted approach that has been used to 
detect seafood mislabelling and fraud for over two decades (Marko et  al., 2004). 
The widespread adoption of DNA barcoding as a forensic tool has benefited from 
technological advances, which have increased accessibility and decreased sequencing 
costs (D. Willette et  al., 2014). Trust in the objectivity and reliability of molecular 
genetics has also grown, bolstered in part by the public’s acceptance of at‑home DNA 
test kits that enable individuals to learn about their genetic makeup, genealogy and 
biomedical health risks (Janzen et al., 2005; Phillips et al., 2018). In DNA‑barcoding 
methods, a highly conserved region of the mitochondrial COI gene is used as a 
diagnostic tool to infer the closest species‑level identification of a tissue sample by 
cross‑referencing results with global, open‑access genetic databases, including the Tree 
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of Life and Barcode of Life projects (Janzen et al., 2005). These advances have enabled 
researchers and practitioners to begin addressing the harms of seafood fraud, including 
the overharvesting of marine fisheries (Pauly et al., 2005) and the entry into the market 
of fish known to be hazardous to human health (Cohen et al., 2009).

THE CASE IN THE LITERATURE
DNA‑barcoding investigations of seafood fraud have been conducted in numerous 
countries. Such studies are often focused on the final point of the supply chain 
(for instance, restaurants) and are frequently limited to a single sampling event or 
period (Donlan and Luque, 2019). For example, studies have examined seafood 
mislabelling in Los Angeles, California (Khaksar et al., 2015; K. Warner et al., 2012), 
reporting single‑year mislabelling rates of 16  percent to 55  percent in restaurants. 
DNA‑barcoding studies, including those that span multiple years and levels of the 
supply chain, can help examine the effectiveness of measures for quality control, 
food‑safety and truth‑in‑labelling regulations (Nehal et  al., 2021). Building upon 
the aforementioned studies in Los Angeles Willette  et  al. (2017, 2021) designed and 
conducted multiyear studies to track seafood mislabelling over time at the restaurant, 
grocer and processing‑plant levels. These two studies used similar sample preservation, 
laboratory and bioinformatics protocols to permit comparison, although Willette et al. 
(2021) targeted ecolabelled seafood products. Willette  et  al. (2017) sampled 323 fish 
samples sold under nine common fish names from 26 sushi restaurants between 2012 
and 2015, while Willette et al. (2021) sampled 123 fish from two processing plants and 
149 fish from 13 grocers sold under 12 common fish names between 2017 and 2019. 
Notably, some, but not all, the same types of fish were targeted in both studies, due 
to the availability of consistently sold fish types. Combined findings from these two 
studies reveal a pattern of increased rates of seafood mislabelling through the supply 
chain. Seafood processing plants had the lowest mislabelling rate (4 percent), followed 
by grocers (11 percent), and sushi restaurants (47 percent). In both studies, mislabelling 
instances were not homogeneous across species. In sushi restaurants, fish sold as tuna, 
albacore (Thunnus alalunga) and salmon had a low mislabelling rate (<10  percent); 
whereas red snapper and halibut were mislabelled 100 percent of the time. In grocers, 
king salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch) and 
halibut were never found to be mislabelled, whereas black cod (Anoplopoma fimbria) 
and California halibut (Paralichthys californicus) were mislabelled 100  percent of 
the time. Mislabelling in processing plants was limited to a single fish type – Pacific 
halibut (Hippoglossus stenolepis) at 13 percent, with no other instances of mislabelling.  
In both studies, mislabelling rates were not found to differ statistically across sampling 
years. In Willette et  al. (2021), the sampling years of 2018 and 2019 occurred after 
the implementation of the United States Seafood Import Monitoring Program  
(16 US Code § 1885), yet only Atlantic cod and albacore tuna were targeted species 
included in this federal reporting initiative, both with low to no instances of mislabelling 
in the study. In summary, these studies found that seafood mislabelling rates decreased 
moving back through the supply chain, yet did not fluctuate statistically between years, 
and that most instances of mislabelling are concentrated on a limited number of fish 
types. 

SCALE AND GLOBAL INCIDENCE OF THE CASE
Incidents of seafood mislabelling in restaurants and grocers have been detected using 
DNA barcoding in at least 35 countries around the world (Willette et al., 2025). Such 
incidents in processing plants are less common (Shehata et  al. 2019, Willette et  al., 
2021).
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PUBLIC‑HEALTH ASPECTS AND OTHER IMPLICATIONS
Seafood mislabelling and fraud cause multiple harms to consumers, society and the 
environment. Seafood mislabelling is a public‑health concern as it may result in allergy 
or toxin exposure to consumers when products are inaccurately labelled as a different 
species. Mislabelling may also result in economic costs to consumers who do not 
receive the product they paid for and expected to receive, and it may deceive consumers 
about their dietary choices related to religious or environmental aspects (Giusti et al., 
2024). 

TOOLS TO PREVENT THE ISSUE
DNA barcoding is a potent and frequently applied molecular‑genetics tool used 
to investigate and validate the taxonomic identification of seafood, leveraging the 
highly accurate, low error rate of the Sanger sequencing method that has been used in 
studies from over 35 countries (Willette et al., 2025). Further, the emergence of DNA 
metabarcoding (Giusti et al., 2024) opens the possibility of scaling up molecular‑based 
DNA monitoring of multiple seafood products simultaneously and of mixed‑species 
products. Importantly, DNA barcoding and DNA metabarcoding are not substitutes 
for other surveillance tools, yet they are complementary techniques that are increasingly 
accessible around the world to build greater confidence in the accuracy of seafood 
labelling across the seafood supply chain. 

CONCLUSIONS AND RECOMMENDATIONS
Detection of seafood mislabelling at multiple points in the supply chain indicates 
that addressing this challenge will require complementary action throughout 
the supply chain. Recommended actions include strengthening federal and state 
policies on product labelling, including consistent requirements for common and 
scientific names, as well as declarations of country of origin and method of capture. 
Such policies should be harmonized between state and federal levels, and where 
possible, harmonized with international regulations. Second, regular and mandatory  
DNA‑based species‑identification testing should be implemented to complement 
existing visual inspection and paper traceback systems. 

Case study 5. Developing local partnerships to reduce 
seafood mislabelling – the Los Angeles Seafood Monitoring 
Project

This case study has a slightly different format but has been included as it demonstrates 
the value of combining the various tools described in the previous case studies, along 
with media and public awareness efforts, for effective mitigation of seafood fraud. 

INTRODUCTION 
Scientific studies using molecular methods to detect seafood mislabelling often garner 
media attention immediately after their publication. This was true, for example, in 
Los Angeles, California, for three scientific seafood‑mislabelling studies conducted in 
2012, 2015 and 2017 (Khaksar et al., 2015; Warner et al., 2012; Willette et al., 2017), 
as well as for a legal case regarding tuna fraud by a popular sandwich restaurant chain 
(Amin v. Subway Restaurants., Inc., 2023) and for an investigative study conducted by 
a popular media outlet (Flax, 2017). In the latter two examples, the names of surveyed 
restaurants were publicly disclosed. This was not the case in the first three scientific 
studies. Unfortunately, these studies alone have done little to reduce instances of 
seafood mislabelling in Los Angeles. 
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THE CASE IN THE LITERATURE 
There is evidence, however, that seafood mislabelling does decrease when media 
attention is paired with broader community engagement, promotion of seafood 
literacy among consumers, or improved enforcement action (Mariani et  al. 2015; 
Naaum and Hanner, 2015; Warner et al., 2019). The Los Angeles Seafood Monitoring 
Project is a collaboration among local academia, industry and government stakeholders 
with the overarching aim of deterring, preventing and eliminating seafood mislabelling 
across the Greater Los Angeles area (Willette et  al., 2018). Project partners seek to 
(a) clarify ambiguity in local and federal seafood‑labelling requirements, (b) provide 
best practices for labelling conventions in compliance with local and federal policies, 
and (c) conduct ongoing blind sampling and DNA‑barcode testing of seafood sold by 
industry partners to enable tracking of changes in mislabelling rates and patterns over 
time. The project posts its recommendations, actions and findings on a public website 
(www.losangelesseafoodproject.org), including aggregate and anonymized results of 
the ongoing DNA‑barcode testing. Recent results demonstrate that these sustained 
and collaborative efforts have led to a threefold reduction in seafood mislabelling 
rates in Los Angeles over the 10‑year study period, from an average of 47  percent  
(Willette et al. 2017) to an average of 16 percent (Willette et al. 2025). This trend reflects 
the cumulative impact of public‑facing education, consistent DNA‑based monitoring 
and improved compliance and communication among vendors. 

A salient example of the project’s efforts to clarify seafood‑labelling ambiguity 
pertains to members of the genus Seriola, a group of fish frequently mislabelled  
(>90 percent) in Los Angeles, as inferred from DNA‑based identification testing 
(Willette et  al., 2017). In accordance with the U.S. Food and Drug Administration 
Seafood List (US FDA CPG Sec. 540.750, 2020), the only acceptable market name 
that may be used for five of the six Seriola species is “amberjack”, with the acceptable 
market names for the sixth species being “amberjack” or “yellowtail”. These Seriola 
species differ in price and taste, and are traditionally sold under unique names in Japan, 
essential differences that are lost in the ambiguous labelling scheme and deny both 
biological reality and Japanese culture. 

PUBLIC HEALTH ASPECTS 
Furthermore, different Seriola species may present higher health concerns at certain 
times of the year due to seasonal patterns in toxins. For example, wild‑caught longfin 
yellowtail (S. rivoliana) can harbour ciguatoxins, which may lead to paralysis or death 
(Perez‑Arellano et al., 2005). Suggested revisions to the Seriola labelling scheme were 
submitted by the Los Angeles Seafood Monitoring Project (Willette et al., 2018) and 
are reflected in the listing of common names on the FDA Seafood List (FDA Seafood 
List, 1993). 

CONCLUSIONS AND RECOMMENDATIONS 
The sustained impact of these recommendations, alongside outreach and DNA 
surveillance, has demonstrated that structural interventions, rather than one‑time 
investigations, are key to long‑term reduction of seafood mislabelling (Willette et al., 
2025). Efforts such as these help to reduce mislabelling instances that result from 
guideline limitations, allowing regulators to focus on intentional seafood fraud. 
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Case study 6. DNA barcoding reveals mislabelling of 
seafood in European Union mass caterings

INTRODUCTION 
In 2016, a review was conducted analysing scientific papers related to seafood‑mislabelling 
incidents worldwide that used DNA barcoding to detect real seafood mislabelling 
(Pardo and Jiménez, 2020). This review revealed an overall misdescription rate of 
30 percent and a significantly higher rate in mass‑catering food services (restaurants 
and takeaways). 

THE CASE IN THE LITERATURE
In the European Union, the vast majority of seafood‑mislabelling studies have focused 
on the retail end of the supply chain – mainly supermarkets and fishmongers, while few 
studies in mass caterings have studied samples from the hotel, restaurant and catering 
sector (Pardo and Jiménez, 2020). The first large‑scale attempt to study the rate of fish 
mislabelling in the hotel, restaurant and catering sector across the European Union was 
launched in 2015, where a total of 283 samples were analysed by DNA barcoding. The 
samples were collected in 180 mass‑catering outlets in 23 European Union countries 
(Pardo et al., 2018). This study tried to elucidate the real percentage of mislabelling 
in the European Union, since previous studies revealed highly variable degrees of 
mislabelling, covering a reduced number of European Union cities and, in many cases, 
a reduced variety of fish species. In 2015, a French study analysed 100 fish samples in 
Paris with a surprisingly low mislabelling rate – just 3 percent (Bénard‑Capelle et al., 
2015) Similar results were revealed in Italy and in the United Kingdom after analysing 
185 and 115 samples (respectively) obtained in sushi restaurants (Mariani et al., 2015). 
However, a study carried out in Brussels analysed 280 fish dishes sold in commercial 
restaurants, canteens and sushi bars and showed an overall 31.1 percent of mislabelled 
samples (Christiansen et al., 2018). Finally, two species‑specific studies conducted with 
tuna in Spain and Germany revealed higher mislabelling percentages: from 50 percent 
in Spain to 83 percent in Germany (Gordoa et al., 2017; Kappel and Schröder, 2016). 
These discrepancies were the starting point of the largest study ever made, covering  
23 European Union countries (Pardo et al., 2018). The study concluded that 31 percent 
of the shops studied sold mislabelled seafood. Remarkable differences between 
countries were observed, with the highest mislabelling rate (50  percent) found in 
Finland, Germany, Iceland and Spain. However, the study recommended that specific 
national surveys be conducted to confirm their results. So far, a national survey was 
conducted in Spain, where 313 samples were collected in 204 mass caterers and analysed 
by DNA barcoding. The results showed that 50  percent of the establishments sold 
mislabelled seafood (Pardo and Jiménez, 2020). In addition, a recent study detected a 
mislabelling rate of 7.5 percent in the Belgian supply chain after analysing 53 samples 
sold as Atlantic cod and sole products in food catering (Deconinck et al., 2020).

SCALE AND GLOBAL INCIDENCE OF THE CASE
This report, which focuses on fish fraud in Europe, presents findings similar to those 
reported in the United States and Argentina, as illustrated by two case studies. This 
reveals the global scale of fish mislabelling in the hotel, restaurant and catering sector.

PUBLIC‑HEALTH ASPECTS AND OTHER IMPLICATIONS 
The scientific community has pointed out the extremely hazardous risks that fish 
mislabelling may pose for public health. These risks include (i) the substitution of 
butterfish (Peprilus triacanthus), in sushi restaurants, with escolar (Lepidocybium 
flavobrunneum) – an oilfish with high levels of indigestible wax esters (Fariñas 
Cabrero et al., 2015); (ii) the presence of poisonous species banned from the European 
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Union market (Armani et al., 2015); (iii) the consumption of fish species (Nile perch 
and pangasius) contaminated with pollutants (Ferrantelli et  al., 2012; Filonzi et  al., 
2010). Other implications include the commercialization of several highly endangered 
shark species, leading to significant negative impacts on ocean ecosystems (French and 
Wainwright, 2022).

TOOLS TO PREVENT THE ISSUE
The legislation in force in the European Union should be improved to include 
mandatory information (commercial designation and scientific name) in the labelling of 
processed products, including the fish we consume at restaurants. Strong food‑control 
management programmes and enforcement through inspection, monitoring and 
control must be implemented by governments and the food industry, including the 
introduction of voluntary control systems. 

CONCLUSIONS AND RECOMMENDATIONS
The detection of seafood mislabelling at multiple points in the supply chain indicates 
that addressing this challenge will require complementary actions throughout the 
supply chain. Recommended actions include strengthening European Union policies 
regarding product labelling, including consistent requirements to include the common 
and scientific names of products, country of origin and method of capture. 

Case study 7. Tropical tuna misidentification in the canning 
industry

INTRODUCTION 
Tuna is one of the most important fish species commercialized worldwide. In recent 
years, the canning industry has experienced a processing revolution: most canned 
products produced in the European Union use imported, frozen, skinned tuna 
fillets or loins from a variety of countries. These fillets and loins offer tremendous 
advantages in terms of productivity and yield, yet on occasion, in view of the difficulty 
of visually distinguishing between species, this process leads to species substitution. 
One interesting case is the distinction between tropical juvenile yellowfin tuna and 
bigeye tuna, which is challenging because these two species look very similar in their 
juvenile stages and are often caught together, along with other tropical tuna species, 
mainly skipjack tuna (Katsuwonus pelamis). Tropical tuna fishery catches generally 
include two main target species (yellowfin and skipjack tuna), but also a significant 
percentage of bigeye tuna, accompanied in different proportions by other secondary 
species. During the landing, a sorting of the target species is carried out by the crew 
according to commercial categories, more linked to the size of the individuals than 
to their species. A mixture of skipjack, yellowfin and bigeye juveniles in variable 
proportions are sent to processing plants, where tuna loins are prepared and provided 
to the European Union canning industry. Consequently, a lack of traceability arises 
from this complex supply chain – from overseas vessels, to processing plants, to the 
final canned products offered by retailers in the European Union.

THE CASE IN THE LITERATURE
These discrepancies in species composition estimates from tropical tuna landings 
were first detected in the mid‑1980s by the Tropical Tuna Working Group of the 
International Commission for the Conservation of Atlantic Tunas, which focuses on 
juveniles. However, only one recent scientific paper has confirmed these early warnings 
(Carreiro et al., 2023). 
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This case study focuses on tuna landings delivered to a processing plant in Cabo 
Verde, which primarily supplies the European Union. Using DNA barcoding, 
researchers identified taxonomic misassignments in 33  percent of the individuals 
among the three target tuna species: bigeye, yellowfin and skipjack. The results indicate 
that the mislabeling originated at the landing stage, generating negative ripple effects 
throughout the canning industry. Several studies have documented the substitution 
of yellowfin with bigeye and skipjack; skipjack with bigeye and yellowfin; and even 
the presence of mixed species within individual tuna cans. Sotelo et al. (2018) found a 
7.8 percent mislabelling rate for canned tuna in European Union products. Servusova 
and Piskata (2021) also analysed canned tuna and found that 19.2 percent of skipjack 
and 24.4 percent of yellowfin cans were mislabelled, and one can was identified as a mix 
of yellowfin and skipjack. Bojolly et al. (2017) detected the presence of different species 
in yellowfin tuna cans, concluding that the mislabelling occurs during the production 
in the tuna canning industry (Bojolly et al., 2017; Klapper et al., 2023; Pardo et al., 
2018; Servusova and Piskata, 2021; Sotelo et al., 2018).

SCALE AND GLOBAL INCIDENCE OF THE CASE
Tropical tuna fisheries supply the global canning industry. As such, this case has 
worldwide implications.

PUBLIC‑HEALTH ASPECTS AND OTHER IMPLICATIONS 
The main implication of this case study is from a conservation perspective. Bigeye 
tuna has been internationally assessed as vulnerable, while yellowfin and skipjack tuna 
populations have been evaluated as non‑threatened. The mislabelling of tropical tuna 
species could hide underestimations in the assessment of bigeye tuna viability in the 
near future.

On the other hand, from a toxicological perspective, skipjack tuna has some of the 
lowest heavy‑metal concentrations (including mercury). The mislabelling of other tuna 
species as skipjack may obscure the patterns of transference of these toxic substances 
to humans (Carreiro et al., 2023).

TOOLS TO PREVENT THE ISSUES
In this context, the sample size that a crew would have to manage onboard to correctly 
estimate the percentages of each tuna species would exceed 1  000 fish. This is not 
viable due to the difficulty in identifying correctly small‑sized bigeye and yellowfin 
onboard, the urgency of transferring the catch to the wells as soon as possible and the 
requirement for qualified human resources. For this reason, DNA barcoding is the best 
solution to solve these analytical limitations, but the use of emerging methodologies, 
such as NGS and isothermal amplification, should also be considered. 

CONCLUSIONS AND RECOMMENDATIONS
The mislabeling of tropical tuna species represents a critical challenge for the global 
canning industry. The increasing reliance on imported frozen loins and fillets, combined 
with the visual similarity of juvenile yellowfin and bigeye tuna, creates a high risk of 
species substitution early in the supply chain. DNA barcoding studies confirm that 
these errors originate at the landing stage and propagate through processing and retail, 
undermining traceability and product integrity. The implications are significant. From 
a conservation standpoint, mislabeling can mask the true exploitation of vulnerable 
species such as bigeye tuna, compromising stock assessments and management 
strategies. From a public health perspective, inaccurate species identification may distort 
monitoring of heavy metal exposure, particularly when species with lower contaminant 
levels, such as skipjack, are substituted. Operational constraints make accurate onboard 
sorting impractical, highlighting the need for molecular tools. DNA barcoding offers 
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a reliable solution, and emerging technologies such as next‑generation sequencing and 
isothermal amplification should be considered to improve efficiency and scalability. 
Strengthening traceability across the tropical tuna supply chain is essential to protect 
marine resources, ensure consumer safety, and maintain the credibility of the global 
tuna market.

Case study 8. Substitution of frozen‑thawed fish for fresh 
fish 

INTRODUCTION
Fish traded globally often have long and complex supply chains, with significant 
distances from the places where they are captured or harvested to where they are 
consumed. Because fish are highly perishable, they have traditionally been preserved 
using chilling (in the case of fresh products) and freezing methods. In the fish industry, 
the term “fresh” denotes that the fish has never been frozen along the entire supply 
chain, from its capture until its commercialization. However, for long supply chains, 
even though numerous preservation methods have been used in the industry, freezing 
is the most frequently used technology (Sotelo et al., 2018; Verrez‑Bagnis et al., 2017). 
This process converts the available water into ice crystals (Gram and Huss, 1996), but 
it can affect the fish’s organoleptic characteristics. Although it is feasible to obtain 
high‑quality frozen products, fresh fish is deemed superior, as freezing may result in 
changes in colour, texture and water‑holding capacity, as well as structural damage 
caused by intracellular/extracellular ice‑crystal growth (Dawson, Al‑Jeddawi and 
Remington, 2018). The preference of consumers for fresh fish is based on sensory 
characterizations, as apparent alterations in the flavour, odour, consistency and colour 
of flesh can occur during freezing, frozen storage and thawing (Claret et al., 2012). This 
makes fresh fish more expensive than frozen fish, which creates opportunity for fraud 
in the form of substituting fresh fish with frozen‑thawed fish to generate higher profits. 
In some places, however, such as the European Union, freezing fish is mandatory for 
fishery products intended to be consumed raw (EU, 2011). In any case, according 
to European Union regulations, frozen‑thawed fish must be labelled as defrosted or 
previously frozen and must not be refrozen (FAO, 2010). Otherwise, it is considered 
fraudulent mislabelling. 

There is limited information on the occurrence of this type of mislabelling. The few 
mentions found in official reports are based in the European Union. No figures from 
other regions of the world were found. However, numerous studies on other forms of 
fish mislabelling have been published worldwide and, in 2012 and 2014, the European 
Union adopted additional provisions requiring a more stringent system for traceability 
and labelling of fish products, from catch or harvest through retail. According to these 
provisions, fish labels should include information such as the commercial and scientific 
name, fishing‑gear category, production method, catch or production area, “best 
before”/“use by” date, storage conditions, net weight, information about allergens 
and whether the product is fresh, frozen or previously frozen (Warner et al., 2016). 
Still, concerns regarding the substitution of fresh fish products with frozen‑thawed 
products is increasing, not only within the European Union but worldwide. 



88 Food fraud in the fisheries and aquaculture sector

THE CASE IN THE LITERATURE​
Accurate differentiation between fresh and frozen‑thawed fish is challenging because 
their chemical and physical characteristics are very similar (Karoui et al., 2006). The 
absence of a gold standard for the determination of whether a fish product has been 
previously frozen (EFSA, 2021) makes fish highly vulnerable to mislabelling. Thus, 
official reports of this type of fraud are scarce, and those that are available rely on 
qualitative evaluations such as muscle consistency, eye opacity, etc. (Bozzetta et  al., 
2012). This also has an impact in the absence of figures regarding the incidence of this 
type of fraud. 

In order to state the case in the literature, a search was conducted in Google 
Scholar, exploring literature from 1980 to the present. Although official figures on 
the incidence of this type of fraud were not found, the extensive amount of scientific 
literature focusing on the study of different techniques and methodologies to detect 
this type of fraud illustrates that this type of mislabelling is an important concern. For 
this case study, 127 scientific papers focusing on such methodologies were reviewed, 
concentrating on the methods to determine whether a fish product has been previously 
frozen and thawed. Traditionally, analytical methods have been used. However, 
these methods are not suitable for real‑time detection because they require specific 
laboratory equipment, are destructive and may be time consuming. The methods can 
be divided into different categories, such as biochemical, morphological, organoleptic, 
microbiological or the combination of several of these methods (Table 5). Among 
the specific analytical methods available, the most used are enzymatic, histological, 
measurement of volatile composition and microbiological growth associated with the 
thawing processes (Hassoun et al., 2020a; Sotelo et al., 2018; Verrez‑Bagnis et al., 2017). 
Also, non‑destructive methods (Table 6), especially those based on spectroscopy, are 
becoming more prevalent in recent years. These methods are suitable for use in situ 
because they do not require sample preparation or reagents and provide information 
in real time. These methods are always coupled with chemometrics or data analysis and 
allow for the rapid and easy testing of a high number of samples (Nieto Ortega, 2023). 
Spectroscopic techniques are the most used, namely vibrational (NIR, mid‑infrared 
and Raman), fluorescence or absorption UV‑Vis, and NMR spectroscopy. Also, 
spectroscopic techniques based on imaging, such as hyperspectral imaging (HIS) 
are being used as alternatives to traditional methods (Ghidini et al., 2019b). Indeed, 
according to the review performed by Ghidini et  al. (2019b) on these types of 
techniques for the detection of fish mislabelling, 32 percent of the techniques focused 
on fresh/thawed substitution, 26 percent focused on the production method detection, 
23 percent on species substitution and 19 percent on geographical origin.
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SCALE AND GLOBAL INCIDENCE OF THE CASE​
Substitution of frozen‑thawed fish for fresh fish is a common type of fraud occurring 
worldwide. Although there are regulations in the European Union (EU Regulation 
No.  1169/2011 and EU Regulation No. 1379/2013) that require the declaration of 
whether the fish is fresh, frozen, or has been previously frozen and the preservation 
treatment used, in some other regions and countries no regulations exist. Most 
countries have no government agency responsible for regulating fish fraud, which 
further complicates the ability to obtain reliable data about the problem at the country 
level. Furthermore, there is no official methodology nor standards at national and 
international levels for detecting this type of fraud, and most detection is based on 
qualitative evaluation, which is subjective, or on the use of analytical methods, which 
are time consuming and require qualified personnel. Thus, official control reports 
are scarce. However, it is known that the occurrence of this type of substitution is 
a concern, and numerous attempts are being made to develop rapid methods that 
can provide information in real time to detect previously frozen products that are 
mislabelled.

PUBLIC‑HEALTH ASPECTS AND OTHER IMPLICATIONS
The substitution of frozen‑thawed for fresh fish products has several implications. 
Apart from those related to economic issues and the loss of consumer trust, there 
are other implications related to health and food quality. Since fish is an extremely 
perishable food product, enzymatic and microbiological activity increase dramatically 
after death. Freezing slows down these processes. However, improper storage and 
handling could lead to increased bacterial growth, especially that of Pseudomonas, 
Lactobacillus, Proteus and Shewanella putrefaciens (Noor Uddin et  al., 2013), in 
addition to the growth of other bacteria that cause unpleasant odours due to the 
degradation of amino acids that convert into biogenic amines, sulphides, organic 
acids and other compounds (Stratev et  al., 2015). Furthermore, thawing is a slow, 
non‑uniform process, with some regions of the fish being exposed to higher levels of 
microbial growth due to the temperature increase (Akhtar et al., 2013), moisture and 
available nutrients. The optimal freezing temperature is ‑18 ⁰C. When the process is 
not controlled, some psychrotrophic microorganisms can still grow, for instance at 
temperatures above ‑10 ⁰C (Opoku‑Nkoom, 2015). Quality may also be affected if the 
freezing/thawing process is done incorrectly, since freezing rate is a critical parameter 
for the size and shape of intracellular and extracellular ice crystals (Alizadeh et  al., 
2007). When ice crystals are irregular they may cause cellular damage. Furthermore, if 
they are formed in extracellular spaces, they may cause diffusion of water out of the 
cells, causing tissue dehydration. Also, the freezing process increases the concentration 
of enzymes and salt, causing protein denaturation and drip loss, which affect fish 
texture (Chevalier et al., 2000). A consumer risk could also arise when frozen‑thawed 
fish is mislabelled or misrepresented as fresh. Consumers may unknowingly refreeze 
the product, believing it has not been previously frozen. This second freezing can 
significantly compromise both safety and quality (Hu and Xie, 2021). Repeated 
freeze/thaw cycles can exacerbate microbial proliferation, especially if the product 
has already undergone partial spoilage (Ong and Borris, 2025; Elbarbary et al., 2023). 
Additionally, the structural integrity of the fish deteriorates further, increasing the risk 
of texture degradation, nutrient loss and the formation of harmful compounds. This 
misperception can lead to unsafe consumption practices and increased exposure to 
foodborne pathogens (Du et al., 2023)
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TOOLS TO PREVENT THE ISSUE​
Of primary importance in preventing this issue is the establishment of regulations. 
Though specific regulations already exist in the European Union (Commission 
Regulation [EU] No 1276/2011), no relevant legislation was found for other regions 
and countries of the world. In addition, a full‑chain traceability framework that 
determines all the processes that the fish has undergone is needed. For this purpose, 
collaboration between different institutions and the existence of regulatory entities 
to prevent fish fraud is of utmost importance. The boom of Industry 4.0‑enabling 
technologies presents an unprecedented opportunity to trace the entire supply chain. 
Some tools, such as electronic labels, QR codes and barcodes, could be used to have 
real‑time information about the processes of the fish product. As stated before, reliable 
methods to determine whether a fish product has previously been frozen and thawed 
are needed. The absence of a gold standard also makes inspection difficult. Traditional 
methods require expensive equipment, are time consuming and require specialized 
personnel. On the other hand, non‑destructive technologies – especially cost‑effective, 
portable versions, open the door to establishing a standardized methodology in 
the industry, but standards must be defined. In addition, such technologies must 
be continuously calibrated through chemometrics and machine learning. Yet, these 
technologies would offer a rapid response that could be useful in quality control at 
several stages of the value chain (EFSA BIOHAZ Panel, 2021).

CONCLUSIONS AND RECOMMENDATIONS
Fish products are vulnerable to mislabelling fraud, especially the substitution of 
frozen‑thawed fish for fresh fish, which is associated with the increase in worldwide 
consumption of fish and the higher prices associated with fresh fish. This form of 
mislabelling can lead to public‑health problems, a decrease in the quality of the products, 
loss of consumer trust and economic losses. The absence of regulations in different 
parts of the world, together with the absence of a gold standard to determine whether a 
fish product has been previously frozen, makes it very difficult to have a global picture 
of the incidence of this type of fraud. The fact that there are efforts in researching new, 
rapid tools to detect such fraud illustrates that this form of mislabelling is an important 
concern. In this sense, there is a need for consensus between the scientific community, 
public‑health agencies and regulatory institutions to determine a methodology that 
allows for the detection of this type of fraud. 

Case study 9. Misrepresentation of production method: the 
case of farmed versus wild‑caught seafood 

INTRODUCTION
The aquaculture industry has experienced significant growth over the past century, 
increasing from a 4  percent share of total fishery and aquaculture production in 
the 1950s to a 49 percent share in 2020 (FAO, 2022a). Of the 178 million  tonnes of 
seafood produced globally in 2020, 90  million  tonnes came from capture fisheries 
and 88 million tonnes were produced through aquaculture (FAO, 2022a). In contrast, 
capture‑fishery production has stabilized over the past 30  years despite growing 
demand, and approximately 30 percent of fish stocks are considered to be overfished 
(Mangin et al., 2021). The cost of aquaculture production has dropped over time and 
retail prices for farmed seafood tend to be lower than those of wild‑caught seafood. 
In addition, aquaculture generally produces greater volumes of seafood that are 
available throughout the year (Stiles et al., 2013). By helping meet the increased global 
demand for animal protein, aquaculture can alleviate some of the strain placed on 
overharvested wild seafood populations (Brayden et al., 2018). However, aquaculture 
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production has its own set of concerns, including the use of antibiotics and pesticides, 
disease brought on by overcrowding, and negative effects on native stocks (Brayden 
et  al., 2018). Despite the increasing availability and relatively low price of farmed 
seafood, consumers tend to prefer wild seafood due to the perception that it is of 
higher quality (Muñoz‑Colmenero et  al., 2017). While farmed seafood can also be 
a source of high‑quality protein, consumers cite factors such as taste, health and 
nutrition in supporting their preference for wild seafood (Pulcini et al., 2020; Verbeke 
et al., 2007). Given the relatively high consumer demand and pricing for wild‑caught 
seafood, there is an economic incentive associated with mislabelling farmed seafood 
as wild caught. Additionally, the similar appearance of many seafood species makes it 
difficult for consumers to recognize when seafood has been mislabelled (Silva et al., 
2021). The purpose of this case study is to provide examples of seafood known to 
be misrepresented based on production method, to discuss the public‑health and 
environmental implications of this form of mislabelling, and to describe the current 
tools available for combating this type of fraud.

THE CASE IN THE LITERATURE
Some of the main species of seafood reported to be mislabelled on the basis of 
production method are salmon, seabass and shrimp (Table 7). Although several studies 
have been published describing the mislabelling of farmed seafood as wild caught, there 
is a general lack of research on this aspect of seafood fraud (Pardo et al., 2016). Thus 
far, most reports of this type of fraud have focused on instances where a species known 
to be exclusively or almost exclusively farmed is mislabelled as being wild caught.  
In these cases, production‑method mislabelling can be readily detected using  
standardized DNA‑based tools for species identification. Other instances of 
production‑method mislabelling (for instance, when a single species is both farmed 
and wild caught) require more complex analytical tools for detection and are therefore 
less extensively applied to examine fraud in the commercial marketplace. 

TABLE 7
Examples of seafood reported to be mislabelled based on production method

True identity Mislabelled as Geographic 
regions Detection method References

Farmed (Atlantic) salmon 
or rainbow trout

Wild (Pacific) salmon Canada, United 
States of America

DNA barcoding Cline, 2012; Warner et al., 
2016; Warner et al., 2019

Farmed salmon Wild salmon United States of 
America

Measurement of 
synthetic astaxanthin 
levels

Burros, 2005

Farmed salmon or trout Wild salmon Norway Isotopic analysis and 
fatty‑acid composition

Thomas et al., 2008

Farmed rainbow trout Wild native brown 
trout

Spain DNA barcoding Muñoz‑Colmenero et al., 
2017

Farmed, imported shrimp Wild local shrimp United States of 
America

DNA barcoding Korzik et al., 2020

Farmed, imported shrimp; 
farmed, imported sutchi 

US wild shrimp; wild 
sole

United States of 
America

Federal Investigation U.S. Department of 
Justice, 2011

Farmed European Union 
seabass

Wild European Union 
seabass

Italy Multivariate analysis Fasolato et al., 2010

The substitution of farmed Atlantic salmon or rainbow trout for wild Pacific salmon 
is one of the more widely reported examples of production‑method mislabelling  
(Table 7). The name Pacific salmon refers to a group of six closely related species, 
including chum (O. keta), coho (O. kisutch), Chinook (O.  tshawytscha), pink  
(O. gorbuscha), sockeye (O. nerka) and cherry (O. masou) salmon (Cline, 2012). 
These species are all primarily wild caught, with limited farming of coho, sockeye 
and Chinook salmon (Cline, 2012; Warner et al., 2016). On the other hand, Atlantic 
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salmon and rainbow trout are almost exclusively farmed species produced worldwide 
in countries and regions such as Chile, Europe and North America, with very limited 
wild harvest (NOAA Fisheries, 2022; FAO, 2025b; Tom and Olin, 2010; FAO, 2022b). 
Globally, farmed Atlantic salmon constitutes over 90  percent of the farmed salmon 
market and more than 50  percent of the total global salmon market (FAO, 2025b). 
Due to the relatively high price of wild‑caught salmon, there is an economic incentive 
to mislabelling farmed salmon or trout as wild caught (Cline, 2012; Stiles et al., 2013;  
Tom and Olin, 2010). 

Several studies have reported mislabelling of farmed salmon or trout as wild salmon 
in the commercial marketplace (Cline, 2012; Warner et al., 2013; Warner et al., 2015; 
Hu et  al., 2018; Thomas et  al., 2008; Burros, 2005; Stiles et  al., 2013; Consumer 
Reports, 2006). In studies that have used DNA testing, it is assumed that samples 
identified as Atlantic salmon are farmed due to the extremely limited availability of 
wild‑caught Atlantic salmon. (Less than 1 percent of commercially available Atlantic 
salmon are harvested in the wild [Tom and Olin, 2010]). For example, in a series of 
studies conducted in the United States, it was reported that 11  percent of samples 
labelled as various Pacific salmon species were instead identified as Atlantic salmon 
(Cline, 2012), while Warner et al. (2015) reported that 69 percent of samples labelled 
as wild salmon were actually identified as Atlantic salmon or rainbow trout. In a study 
using a combination of chemical analyses, multiple samples collected in Norwegian 
supermarkets labelled as “wild salmon” were instead determined to be farmed salmon 
or trout (Thomas et al., 2008). Interestingly, research has suggested that the degree of 
salmon mislabelling is dependent on the time of year, with lower rates of mislabelling 
recorded during the salmon fishing season as compared to the off‑season (Warner 
et al., 2015, Warner et al., 2013; Cline, 2012; Consumer Reports, 2006). This suggests 
that mislabelling may be driven by a reduction in the availability of fresh wild‑caught 
salmon during the off‑season (Cline, 2012). Another study reported the mislabelling 
of farmed rainbow trout (Oncorhynchus mykiss) as wild native brown trout (Salmo 
trutta) in multiple samples collected in Spain (Muñoz‑Colmenero et al., 2017).

SCALE AND GLOBAL INCIDENCE OF THE ISSUE
As indicated, the substitution of farmed for wild‑caught seafood, especially farmed 
salmon and trout, has been documented globally. With aquaculture production 
providing an increasing proportion of seafood to the global population, farmed seafood 
has become more accessible and affordable. However, consumer preferences for wild 
seafood, combined with price differentials between farmed and wild seafood, have 
created strong incentives for mislabelling. As demonstrated in Table 1, salmon, shrimp 
and seabass have all been found to be misrepresented based on production method. The 
most widespread form of production‑method mislabelling involves farmed salmon and 
trout being falsely represented as wild, with documented cases in Europe and North 
America. Instances of mislabelling of farmed shrimp as wild shrimp have been reported 
in the United States, while the substitution of farmed seabass for wild seabass was 
previously detected in Italy. 

PUBLIC‑HEALTH ASPECTS AND OTHER IMPLICATIONS 
In addition to the economic deception associated with production‑method 
misrepresentation, it also presents numerous public‑health and environmental concerns. 
With regard to public health, some farmed species contain different nutritional 
profiles as compared to wild seafood (Szlinder‑Richert et  al., 2011). Mislabelling of 
these species can impact consumers who are seeking specific seafood products based 
on nutritional benefits, such as omega 3 fatty‑acid content (Naaum et  al., 2016). 
Furthermore, some farmed seafood may contain higher levels of environmental 
contaminants or antibiotic residues. It is important that these products are correctly 
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labelled so they can be properly screened for environmental contaminants and for any 
banned compounds (Naaum et al., 2016). Mislabelling of the production method may 
result in contaminated products evading inspection protocols and erroneously entering 
the commercial marketplace. In this way, fraudsters can circumvent targeted inspection 
of farmed products and command higher prices by selling the products as “wild”, 
thereby providing a double incentive to misrepresent the production method (Naaum 
et  al., 2016). For example, three owners of US seafood wholesalers were sentenced 
to prison for their roles in purchasing and selling mislabelled seafood, including 
farmed sutchi (Pangasianodon hypophthalmus) imported from Vietnam, mislabelled 
as wild‑caught sole, as well as imported farmed shrimp mislabelled as wild‑caught US 
shrimp (U.S. Department of Justice, 2011). By mislabelling sutchi as sole, the owners 
avoided paying close to USD 150 000 in anti‑dumping duties associated with sutchi 
and other Pangasius spp. Furthermore, malachite green and Enrofloxacin were detected 
in several of the fish seized during the investigation. These compounds are prohibited 
in US foods but are known to be used in some fish‑farming operations outside of the 
United States. 

Misrepresentation of the production method also interferes with the ability of 
consumers to make informed purchasing decisions. Certification programmes meant 
to increase consumer awareness of sustainable seafood choices have increased with 
consumer demand for ecofriendly, natural and organic products (Gulbrandsen, 
2009; Uchida et  al., 2014; Willette et  al., 2017). However, the effectiveness of these 
programmes is dependent on accurate labelling of production method, as well as species 
and provenance, combined with supply‑chain traceability (Willette et al., 2017). The 
mislabelling of a farmed species associated with unsustainable aquaculture practices 
as a wild‑caught species from a sustainably managed fishery not only interferes with 
purchasing decisions, but also promotes sales of unsustainable seafood.

TOOLS TO PREVENT THE ISSUE 
There are a variety of analytical tools available to detect production‑method 
mislabelling. The mislabelling of a species that is almost exclusively farmed as 
“wild‑caught” can be detected using DNA‑based tools for species identification, such 
as DNA barcoding (Cline, 2012; Warner et al., 2015; Warner et al., 2013; Hu et al., 
2018; Muñoz‑Colmenero et  al., 2017; Korzik et  al., 2020). However, in situations 
where the same species is both farmed and wild caught, alternative analytical tools 
are required for detection, such as liquid chromatography, gas chromatography/
mass spectrometry (GC/MS), multi‑element profiling, stable isotope analysis, proton 
nuclear magnetic resonance ([1]H NMR) spectroscopy, or near‑infrared spectroscopy 
(NIRS) (Turujman et  al., 1997; Maestri et  al., 2018; Mannina et  al., 2008; Ottavian 
et al., 2012; Arechavala‑Lopez et al., 2013). For example, liquid chromatography can 
be used to detect farmed salmon based on the presence of synthetic astaxanthin in 
the fish flesh (Turujman et al., 1997). Stable isotopes have been used in several studies 
to differentiate farmed from wild seafood, including shrimp (Wang et al., 2018) and 
salmon (Wang et al., 2018). Fatty‑acid analysis is a powerful method for differentiating 
farmed and wild seafood and has been widely researched in fish such as gilthead 
sea‑bream (Sparus aurata) and European seabass (Arechavala‑Lopez et  al., 2013) as 
well as salmon (Grazina et al., 2020; Megdal et al., 2009). More recently, another study 
used a combination of chemometrics and elemental fingerprinting to correctly identify 
the production method of wild and farmed gilthead sea‑bream in the majority of test 
samples (Mamede et al., 2022). 

Oftentimes, a combination of chemical‑based methods is used for improved 
accuracy (Chaguri et al., 2017; Fasolato et al., 2010; Thomas et al., 2008). For example, 
numerous studies have used a combination of isotopic ratio analysis and multi‑element 
profiling to differentiate farmed from wild seafood species (Li et al., 2016), including 
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carp (Cyprindae family) (Liu et al., 2020), European seabass (Varrà et al., 2019) Asian 
seabass (Gopi et al., 2019), shrimp (Ortea and Gallardo, 2015) and salmon (Anderson 
et al., 2010). Other studies have shown that a combination of isotopic ratio analysis 
and fatty‑acid composition can be used to differentiate between wild and farmed 
European seabass (Thomas et al., 2008; Bell et al., 2007) and salmon (Thomas et al., 
2008). Farabegoli et al. (2018) conducted multivariate analysis to authenticate wild and 
farmed European seabass considering biometric traits, fatty‑acid profile, elemental 
composition and isotopic abundance. They reported that fatty‑acid profiles showed the 
most accurate results. An emerging method that examines the microbiome of seafood 
has shown promising results for tracing the geographical origin of seafood (Milan et al., 
2019; Pimentel et  al., 2017) and may prove to be an effective tool in differentiating 
between farmed and wild seafood (Ramírez and Romero, 2017). While analytical tools 
have an important role in detecting the misrepresentation of the production method, 
they should not be used as the sole means of preventing fraud. Rather, they should 
be used as part of a comprehensive food‑fraud mitigation plan that includes supplier 
audits and rigorous supply‑chain traceability (Lees and Reimann, 2021; Naaum and 
Hanner, 2015). 

CONCLUSIONS AND RECOMMENDATIONS 
Seafood is highly vulnerable to fraud related to the misrepresentation of the 
production method, in part due to the greater consumer demand and higher 
prices associated with wild‑caught seafood. The mislabelling of farmed salmon 
or trout as a wild‑caught product appears to be the most widely reported type of 
production‑method misrepresentation, with limited instances of production‑method 
mislabelling reported for other species (such as shrimp and European seabass). In 
addition to the economic consequences of production‑method mislabelling, there are 
numerous public‑health concerns due to differences in nutritional composition and 
contaminants of some farmed and wild seafood. Additionally, production‑method 
misrepresentation interferes with consumer purchasing decisions and depletes the 
effectiveness of seafood‑certification programmes meant to promote sustainability. 
Several analytical tools have been developed to differentiate between farmed and wild 
seafood, including DNA‑based tests and chemical analyses. However, it has proven 
challenging to discriminate between wild and farmed populations of the same species, 
and in these cases multivariate analyses are often carried out using a combination of 
analytical methods and chemometrics. In addition to analytical tools, a comprehensive 
food‑fraud mitigation plan involving rigorous supply‑chain traceability is essential in 
combating production‑method misrepresentation.
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Case study 10. Geographical‑origin mislabelling 

INTRODUCTION
Over the last two decades, genetic methods have helped uncover substitution of species 
in the seafood industry worldwide and have exposed species mislabelling as a prevalent 
phenomenon that greatly hampers traceability efforts (Kroetz et al., 2020; Miller and 
Mariani, 2010; Wong and Hanner, 2008; Jacquet and Pauly, 2008). This worrying trend 
has prompted exploration on the rate of species mislabelling across the seafood supply 
chain, illustrating that some species (Cawthorn et al., 2018) or some sectors, such as 
the restaurant industry (Christiansen et al., 2018; Vandamme et al., 2016), may be at 
higher risk of product substitution than others. Media coverage, consumer awareness 
and the involvement of non‑governmental organizations have led the industry and 
public authorities to tighten their control and have contributed to increased traceability 
standards and decreased species mislabelling trends in the seafood industry (Mariani 
et al., 2015).

Compared to species mislabelling, the verification of the geographical catch location 
of products is much less prevalent in forensic testing of seafood (Ogden, 2008). 
This type of testing is more labour intensive and expertise dependent, and relies on 
probabilistic principles, which often make it less suited for denouncing instances of 
mislabelling, particularly if fraud is suspected (Nielsen, 2016). Yet given the disparate 
levels of conservation status of fish stocks within species, which often require marked 
differences in quota allocations, verifying potential instances of fraud on a spatial 
scale is highly relevant. Indeed, some species may be composed of both well‑managed 
sustainable stocks and depleted stocks, and the sustainable management of these stocks 
depends greatly on compliance with allocated quotas. If these quotas are not respected 
or fish are harvested in adjacent poorly managed stocks, substitution of catch location 
may be one way of letting these illegally caught specimens enter the supply chain 
(Nielsen et  al., 2012a; Nielsen et  al., 2012b). Despite the ecological importance of 
verifying catch locations, few studies have investigated the issue, leaving the door open 
to malpractice (Martinsohn et al., 2019). 

USING GENETIC TOOLS FOR PROVENANCE TESTING
Testing for mislabelling of the geographical catch location implies that a given claimed 
location is associated with a specific fish stock for which biological boundaries should 
match geographical stock‑management boundaries (Reiss et al., 2009). When it comes 
to genetic methods, these boundaries very much depend on the level of reproductive 
isolation between stocks, which will afford each stock a slightly different genetic 
make‑up (Ogden, 2008; Ogden and Linacre, 2015). Part of the reason that genetic tools 
are not commonly used to determine catch location is that the populations of interest 
are not always fully reproductively isolated and may not always display detectable, 
unambiguous, diagnostic genetic characters. In some circumstances, reproductively 
isolated populations exist, but they do not match the stock assessment and management 
boundaries (Reiss et al., 2009). For this reason, identifying catch location requires more 
upstream evaluation on the efficacy of genetic tools, and results will always come with 
some level of probabilistic uncertainty (Nielsen, 2016). In simplest terms, DNA‑based 
identification of geographical origin is founded on two prerequisites: i) the existence of 
detectable, consistent genetic differences between populations inhabiting fished areas, 
and ii) the availability of “baseline” specimens whose genotypes are representative of 
those populations. Figure 2 provides a generalized view of this process.
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FIGURE 2
Schematic representation of the probabilistic assignment to reference populations
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Note: The thick arrows represent the most likely population assignments and the thin arrows represent the 
least likely population assignments. 

USING STABLE ISOTOPE TOOLS FOR PROVENANCE TESTING
While DNA‑based tools depend on evolutionary principles, stable isotope analyses are 
reliant on spatial variations in chemical tracers. The organic isotopic composition varies 
across space and is therefore reflective of the geographical locations an organism has 
inhabited and where it has foraged (Bowen, 2010). These tracers cannot identify the 
population of origin of an organism, but they can give insight into the general region. 
In order to be informative and evaluate catch location, results must be compared 
against isoscape models and mapping (Cusa et al., 2022). Both genetic tools and stable 
isotope analysis have benefits and disadvantages in the evaluation of catch location 
and in identifying instances of geographical mislabelling. Figure  3 offers a pathway 
for decision‑making when attempting to trace an individual back to its population of 
origin. 
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FIGURE 3
Decision tree to evaluate whether genetic tools or stable isotope  

analysis might be more adapted to identify the geographical  
catch location of a specimen
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Source: Adapted from Cusa, M., St John Glew, K., Trueman, C., Mariani, S., Buckley, L., Neat, F. & Longo, C. 
2022. A future for seafood point‑of‑origin testing using DNA and stable isotope signatures. Reviews in Fish 
Biology and Fisheries, 32(2): 597–621. https://doi.org/10.1007/s11160‑021‑09680‑w

THE CASE IN THE LITERATURE
In 2014, R. Ogden and G. Murray‑Dickson published a report for the Department for 
Environment, Food & Rural Affairs of the United Kingdom for which they developed 
genetic markers to evaluate the geographical population of origin of four species of 
fish: Atlantic cod, European hake (Merluccius merluccius), common sole and Atlantic 
herring (Clupea harengus). Based on thousands of voucher specimens, they identified 
highly diagnostic SNPs with the goal of reducing both the cost and complexity of the 

https://doi.org/10.1007/s1116002109680w
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method to be employed while maintaining high levels of confidence for enforcement 
purposes (Ogden and Murray‑Dickson, 2014). 

A panel of 1 290 SNPs for 942 Atlantic cod was reduced to a mere 9 SNPs to assign 
cod back to either the Northeast Arctic or the North Sea with 98 percent assignment 
accuracy. Despite the method’s efficacy and potential for evaluating point‑of‑origin 
fraud (Nielsen et al., 2012a), it took another decade for it to be used in the context of 
mislabelling verification in Europe (Cusa et al., 2025). 

In 2020, the first study was conducted to investigate the level of mislabelling 
of marketed Atlantic cod provenance using the SNPs identified by Ogden and 
Murray‑Dickinson (2014). Atlantic cod is well suited for this type of analysis as, 
despite being a migratory fish, it has well‑defined reproductive and population 
boundaries (Barth et al., 2017; Bekkevold et al., 2015; Hemmer‑Hansen et al., 2013; 
Nielsen et al., 2012a) and those boundaries match to a great extent the subzones of the 
International Council for the Exploration of the Sea in the Northeast Atlantic (FAO 
27) (FAO, 2025b). Atlantic cod also happens to be a fish of huge economic value with a 
history of overexploitation, mismanagement and stock collapse. Evaluating the reliance 
of the traceability system for cod is therefore quite relevant as the species is prone to 
overfishing, and various stocks will require drastically different management plans, 
as shown by at least ten different cod stocks currently assessed by the International 
Council for the Exploration of the Sea (ICES, 2025a). 

Today, most of the Atlantic cod consumed is caught in the Northeast Arctic, 
particularly in the Barents Sea, the Norwegian Sea, and Iceland and Faroes grounds. 
North Sea Atlantic cod stock is also targeted particularly by local coastal states such 
as Denmark, Norway and the United Kingdom (ICES, 2022), and since the case study 
was conducted, the latest assessment prompted a “zero catch” advice for 2026 (ICES, 
2025b). Given the current context of recent cod stock fluctuations in the Northeast 
Atlantic (which led to various stock‑specific seasonal bans and increasingly stringent 
regulations imposed by the European Union) testing for geographical‑provenance 
mislabelling of cod is timely. 

The case study described here, which is further described in Cusa (2022) and Cusa 
et al. (2025), focused on developing a parallel sequencing protocol to segregate between 
cod populations from the Northeast Arctic (Barents Sea, Norwegian Sea, Bear Island 
and Spitzbergen) and cod populations from the North Sea using the nine diagnostic 
SNPs identified by Ogden and Murray‑Dickson (2014). Following the development 
of this technique, the study tested it on cod samples of known origin to evaluate the 
efficacy and accuracy of the method in assigning specimens back to their population 
of origin. This was followed by the first pan‑European cod‑provenance market study 
using these genetic tools on cod samples from both fishmongers and supermarkets, 
sourced in France, Germany, Spain and the United Kingdom.

Only 2  percent of the market samples were not identified as Atlantic cod, but 
around 30 percent of them were mislabelled in terms of geographical origin, with two 
out of three (67 percent) specimens sold with a North Sea label actually coming from 
the Northeast Arctic. This study illustrates the urgent need to further examine the 
rate of geographical‑provenance mislabelling across species and regions. It has been 
argued that species mislabelling may gradually decrease due to public awareness and 
improvement in traceability standards. This might be true for species identification and 
labelling, but geographical origin is currently grossly underexplored, certainly removed 
from the average consumer’s attention, and most likely exposed to fraudulent activities. 

Pushing this examination further illustrates that as much as 50 percent of the total 
samples may have been mislabelled, though this remains to be confirmed with a 
panel of SNPs that could more specifically discriminate between more than two cod 
populations (Figure 4). 

https://fish-commercial-names.ec.europa.eu/fish-names/fishing-areas_en
https://fish-commercial-names.ec.europa.eu/fish-names/fishing-areas_en
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FIGURE 4
Circos plot illustrating claimed provenance of cod products  

from retailers and actual provenance
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Note: Claimed provenance provided by retailers either verbally or on packaging. Actual provenance evaluated 
using GENECLASS2.0 with over 80 percent assignment accuracy and minimum amplification of eight SNPs.

SCALE AND GLOBAL INCIDENCE OF THE CASE 
Little research has been conducted regarding the issue of provenance mislabelling 
of marine species. As such, its scale is unknown. This illustrates further the need to 
investigate these methods of determining geographical provenance. As for Atlantic 
cod, the mislabelling of point‑of‑origin was widespread across several European Union 
countries, though some countries, such as France and Spain, performed worse than 
others that displayed higher levels of accurate labels, such as the United Kingdom and 
Germany (Cusa, 2022). 

PUBLIC‑HEALTH ASPECTS AND OTHER IMPLICATIONS
Mislabelling of seafood geographical origin can have important public‑health 
implications. Consumers rely on accurate labelling to make environmental and ethical 
choices, and to avoid health risks that might be associated with fish from certain 
regions. Seafood from regions that have high pollution or contaminant loads may cause 
health concerns related to the presence of, for example, heavy metals, polychlorinated 
biphenyls, parasites, or pathogens. By consuming mislabelled specimens, vulnerable 
people such as pregnant women and children may unknowingly consume fish from 
regions not recommended for them. Failures in the traceability of geographical 
catch location undermines consumer protection and highlights the need for robust 
implementation and enforcement of verification mechanisms throughout the seafood 
supply chain.
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TOOLS TO PREVENT THE ISSUE 
While DNA‑based species identification tools are well established and begin to be 
applied with some regularity, population‑level geographical assignment methods are 
lagging, except for a handful of valuable and emblematic species. Greater impetus in 
characterizing the spatial genetic constitution of a much wider set of commercially 
important species is needed, to develop panels of SNP markers able to trace seafood 
products to the most likely region of origin. With current technologies – which require, 
at a minimum, the sampling of individual fish from the most fished areas, the existence 
of a high‑quality reference genome, and the selection and validation of geographically 
diagnostic markers – the process of validating an operational toolkit for just one species 
may take as long as 2 years. Significant investments are therefore required to make 
these tools a reality for the hundreds of species currently fuelling the global seafood 
market.

In the long run, it should be convenient to invest in novel technologies that may 
allow massive‑throughput screening of environmental DNA (eDNA) samples, which 
contain fragments informative of the genetic make‑up of several species from a certain 
area, thereby allowing quicker reconstruction of the genetic reference maps for key 
species and stocks across regions. Such progress will only be possible alongside 
significant development of nimble computational solutions (one area where artificial 
intelligence could be a force for good) to process such large datasets and link them to 
market samples.

Irrespective of how powerful, available and user‑friendly these genetic tools will be 
in the near future, they will primarily be mechanisms of control and verification. To 
guarantee a sustainable and transparent supply chain that accurately tracks geographical 
provenance, greater progress must be made towards improved stakeholder dialogue, 
legislation and ethical responsibility, so that all sectors can function with greater 
coordination and a renewed awareness for the needs of consumers, fishers and the 
natural environment.

CONCLUSIONS AND RECOMMENDATIONS
Concerns over the environmental, economic and human‑health impact of seafood 
mislabelling have provided momentum for a large body of studies to explore seafood 
markets worldwide for potential instances of misidentification and fraud. Thanks to 
groundbreaking initiatives, such as the International Barcode of Life Consortium, 
and improved genetic technologies, these types of studies have flourished over the last 
decade. Yet, whereas identifying species using DNA has become a routine examination, 
tracing a marketed specimen back to its population of origin is falling behind, 
particularly for mobile organisms like fish. The technique developed to determine the 
geographical origin of Atlantic cod described in this case study, reveals that not only 
is it possible to evaluate catch location in a context of enforcement and monitoring, 
but it should become a regular exercise. The case study reveals that mislabelling catch 
location is much more prevalent than mislabelling species. These results illustrate a 
failure in traceability along the supply chain, with reasons that are likely diverse and 
complex. If this is true for a well‑studied, widely distributed, iconic species such as 
cod, it is reasonable to expect that the situation may be even worse for hundreds of 
other less prominent species. Irrespective of the causes of such a high mislabelling 
rate, it seems apparent that, despite incentives for improved seafood transparency, 
the European Union Commission and other large translational organizations must 
strengthen legislation and step up enforcement through verification points along the 
supply chain. Given the poor state of some stocks, authorities and retailers should be 
able to verify seafood provenance, and customers should be given the ability to choose 
where their seafood comes from using reliable labels. 
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Case study 11. Academic and government initiatives 
for DNA‑based identification of fish mislabelling in the 
neotropics: case studies in Brazil

The Barcode of Life Database (BOLD) is a public, cloud‑based data platform 
developed at the Centre for Biodiversity Genomics in Canada that allows for searching 
over 9.7 million public records using multiple search criteria, including geography and 
taxonomy. BOLD contains records of more than 300 000 fish COI DNA sequences, 
encompassing 293 938 records of the class Actinopterygii, 22 177 of Elasmobranchii 
and 202 reference sequences of Sarcopterygii. Thus, with the development of a 
standardized database of fish COI sequences collected throughout the world, it is now 
possible to use this data to molecularly identify most species and pinpoint mislabelling 
and fraudulent commercialization of fish, including products from regions with highly 
biodiverse ichthyofauna, such as the neotropics (Barbosa et al., 2021; Calegari et al., 
2019; Carvalho et  al., 2017; Souza et  al., 2021). For example, in 2005, using DNA 
barcodes (that is, analysing about 650 base pairs of the COI mitochondrial gene) and 
the BOLD database, a state regulatory agency conducted an investigation in the markets 
of Florianopolis, in southern Brazil, aimed at detecting mislabelled seafood products 
(including fresh filets as well as seafood in cooked meals), which, if found, resulted in 
financial penalties for the retailers (Carvalho et al., 2005). In this investigation, cases of 
mislabelling were found in 24 percent of the samples, with expensive species (such as 
flounder, pink cusk‑eel and cod) being substituted by cheaper species (such as basa and 
Alaska pollock). However, the implementation of such regulatory programmes using 
DNA‑based identification methods has not discouraged deliberate substitution in this 
market. For instance, in 2017, it was reported that 30 percent of samples from fisheries 
and 26 percent of samples from Japanese restaurants, in the same city, were mislabelled 
(Staffen et al., 2017).

A broader government initiative to use DNA barcoding as a standardized method 
for routine and systematic regulation of seafood products was implemented by 
the Brazilian Ministry of Agriculture, Livestock and Food Supply – the ministry 
responsible for ensuring accurate labelling of foodstuff at the federal level. They 
analysed fish products from 14 Brazilian states as well as imports from 8 countries, and 
reported a mislabelling rate of 17.3 percent (Carvalho et al., 2017a).

Further, with the development of new technologies, such as high‑throughput DNA 
sequencing, it is possible to identify species mixtures using a powerful approach called 
DNA metabarcoding or food metagenomics (Carvalho et  al., 2017b). Fish‑species 
mixtures are common within processed cod products, such as fish cakes, and are 
popular around the world, as well as being expensive in Brazil. Cod products are 
very prone to mislabelling since, under Brazilian legislation, only four species can be 
legally labeled “cod” (or bacalhau, in Portuguese): Pacific cod (Gadus macrocephalus), 
Atlantic cod (Gadus morhua), Greenland cod (Gadus ogac) and polar cod (Boreogadus 
saida). Using DNA metabarcoding, Carvalho et  al. (2017) identified species that 
were used to produce processed fish products (such as cod pieces, frozen cakes, 
vacuum‑packaged cooked meals, a restaurant dish and fast‑food cod cakes) and sold 
(and labelled) as “cod”. A mixture of two or more species, including non‑cod fish were 
found in 31 percent of all products. 
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Case study 12. Novel method for authenticating the 
geographical origin of tiger prawn

INTRODUCTION 
Seafood is a crucial tradeable commodity and serves as a major source of animal 
protein for many people worldwide (Asche et al., 2015). The global seafood industry 
generated an estimated USD 151 billion in 2020 (FAO, 2020). Seafood also plays a vital 
role in global food security, with consumption increasing by 3.5 percent per annum 
over a 57‑year period to 2022, outpacing the population growth rate of 1.8  percent  
(Issifu et  al., 2022; FAO, 2018b). With the global population projected to reach 
approximately 10  billion by 2050 (United Nations, 2015), the demand for all types 
of food, including seafood, will rise significantly. To meet this demand, the seafood 
industry must increase production.

Currently, aquaculture is responsible for the majority of seafood production, 
surpassing capture fisheries and wild harvests (FAO, 2018b). This increase in production 
is likely to boost the value of the global seafood industry through heightened imports 
and exports. However, the increased demand and higher profitability of seafood can 
motivate dishonest market‑chain actors to intentionally mislead consumers for greater 
profit. Food fraud, the deliberate misrepresentation or adulteration of food products 
for financial gain, is a growing global concern with significant economic, health and 
social impacts (Bannor et  al., 2023; Spink and Moyer, 2011). Globally, food fraud 
affects various products, including food, meat, dairy, and seafood, and costs the global 
economy billions of dollars annually (European Commission, 2018).

Food fraud in the seafood industry can take many forms, including mislabelling 
species or origin, adding non‑declared substances, and substituting high‑value species 
with lower‑value species, among other types of fraud (Lawrence et al., 2022). This not 
only deceives consumers but also poses health risks, as some substituted species may 
contain allergens or toxins. Falsified provenance information can impact consumers’ 
and honest producers’ interests and fair trade, and it can have food‑safety implications, 
for instance, in the case of fishing in polluted environments. Additionally, food fraud 
undermines consumer trust and can damage the reputation of legitimate businesses.

THE CASE IN THE LITERATURE 
Seafood is the fourth most consumed protein in Australia, after red meat and poultry 
and processed meat (Sui et al., 2017). Australian seafood production has a projected 
value of AUD  3.6  billion (approximately USD  2.3 billion) for 2023‑2024 (DAFF, 
2024a) and is renowned locally and internationally for its premium quality. However, 
this prestige makes the industry vulnerable to adulteration, mislabelling, substitution 
and other forms of market‑chain manipulation. To safeguard the import and export 
supply chain against fraudulent activities, accurate and reliable methods for determining 
seafood provenance are essential.

In Australia, a study revealed that 11.8 percent of seafood products were mislabelled, 
with sharks, rays and snappers having the highest mislabelling rates (Cundy et  al., 
2023). Poor labelling practices, including the use of vague common names, contribute 
to this issue (Cundy et al., 2023). Factors facilitating fraud include inadequate testing 
regimes, unclear definitions and regulatory gaps. Weak labelling regulations and 
ambiguous naming conventions also contribute to high mislabelling rates. For example, 
in Australia, only 25.5 percent of products are labelled at the species level, hindering 
consumer choice for sustainable options (Lindley, 2021).

Australia’s National Agricultural Traceability Strategy 2023 to 2033 emphasizes 
the importance of strong traceability credentials to meet emerging requirements, 
support product integrity claims, and remain competitive in the complex international 
trading environment (DAFF, 2024b). Recently, the government included mandatory 
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country‑of‑origin labelling (CoOL) (Australian Government, 2016) for seafood in 
hospitality settings. This initiative will help consumers make educated and informed 
purchasing decisions for seafood in hospitality settings, aligning with their personal 
preferences.

To address traceability requirements in the seafood supply chain, the Australian 
Nuclear Science and Technology Organisation, in collaboration with the University of 
South Wales and the Sydney Fish Market, has developed two innovative solutions. The 
first approach involves laboratory‑based techniques using isotopic and multi‑elemental 
analyses of seafood. The second approach utilizes X‑ray scanning technology through 
a portable, handheld device to provide real‑time sample analysis in the marketplace, 
offering provenance solutions as a deterrent against fraud.

Scale and global incidence of the case 
Globally, seafood fraud falls into three main categories: origin, adulteration and 

ethical trade (Fox et  al., 2018). Lawrence et  al. (2022) further elaborates on these 
categories, showing that fraud cases in the United States and the European Union 
include species adulteration by adding other, undisclosed and often cheaper products 
(53  percent), illegal international trade (10  percent), illegal and unauthorized fishing 
(3 percent), and species substitution (4 percent), which is related to chain‑of‑custody 
fraud (Figure 5).

FIGURE 5
Select types of food fraud and percentage of occurrence in the United States 

and the European Union
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Source: Adapted from Lawrence, S., Elliott, C., Huisman, W., Dean, M. and van Ruth, S. 2022. The 11 sins of 
seafood: Assessing a decade of food fraud reports in the global supply chain. Comprehensive Reviews in food 
Science and food Safety, 21(4): 3746‑3769. https://doi.org/10.1111/1541-4337.12998
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A crime script analysis study by Lawrence et al. (2024) examined ten court cases 
involving various seafood‑related fraud cases in the United States and the United 
Kingdom. Six cases involved mislabelling imported goods as local, with one also 
involving wild and aquaculture substitution. Three cases involved species substitution, 
two involved miscellaneous label swaps, one involved illegal import, and one involved 
illegal fishing. The study highlights the circumstances and methods used by perpetrators 
to commit fraud, emphasizing the risks posed by incomplete traceability systems, 
inadequate certification standards, lack of provenance‑identification technologies 
within the industry and enforcement agencies, and insufficient consumer knowledge 
in fraud risk‑assessment strategies.

A study by Warner et  al. (2013) found that, on average, one in three seafood 
products tested in the United States were mislabelled. Despite this high rate, only 
1 percent of all seafood entering the United States is reportedly tested by authorities 
for mislabelling (Fox et  al., 2018). Similar cases have been reported globally, from 
Europe to Asia, where seafood substitution and mislabelling are common occurrences  
(Fox et al., 2018; Buck, 2007). 

A study by Sumaila et al. (2020) explored IUU fishing, revealing that foreign vessels 
“launder” seafood by substituting lower‑value species for higher‑value species or 
altering the origin of the catch. The illegal trade of fish caught off the coasts of Africa, 
Asia and South America costs between USD 26 billion and USD 50 billion, with tax 
losses to the rightful nations amounting to between USD 2 billion and USD 4 billion.

In 2014, in a case of fraudulent misrepresentation of origin, imported, farmed shrimp 
from Ecuador, Mexico and elsewhere was being sold as a wild‑caught, local product 
of the United States (Lawrence et  al., 2024). The case United States of America v. 
Alphin Brothers Inc., 2014, was prosecuted through the US Federal Court and involved  
13 450 lbs of shrimp, resulting in USD 100 000 in fines for the company, which also 
faced a 3‑year probation.

In December 2024, Europol and law enforcement agencies from France, Portugal 
and Spain dismantled a seafood‑fraud ring operating across multiple jurisdictions. The 
ring was illegally harvesting contaminated molluscs linked to hepatitis and selling them 
in local markets. Authorities seized 30 tonnes of produce, valued at EUR 10 million 
(approximately USD  10.8  million). The same group was also involved in poaching 
and smuggling glass eels, and the case was connected to human trafficking (European 
Union Agency for Law Enforcement Cooperation, 2024).

Public‑health aspects and other implications
Seafood fraud is a growing international problem that significantly impacts food 

safety. Successful seafood businesses, including those involved in imports and exports, 
require stringent measures to ensure food safety, quality and product authentication. 
Factors such as geographical locations, production methods (both aquaculture and 
wild catch), processing, accurate labelling and handling all influence the safety matrix 
of seafood products and can pose health risks to consumers. Mislabelling and species 
substitution not only undermine consumer trust but also have economic, environmental 
(Cundy et al., 2023), and health consequences.

The presence of contaminants, pesticides and antibiotics (Alberghini et  al., 2022; 
Bondad‑Reantaso et  al., 2023) can lead to various health issues for consumers, 
including antibiotic resistance and exposure to harmful chemicals. The overuse and 
misuse of antibiotics in aquaculture production have resulted in the emergence of 
resistant microorganisms and antimicrobial residues, posing a public‑health challenge 
(Bondad‑Reantaso et  al., 2023; Reverter et  al., 2020). Several reports have indicated 
that seafood commodities have been subjected to import refusals due to food‑safety 
concerns associated with drug residues (Gale and Buzby, 2009).

Contaminants such as heavy metals (Ray and Vashishth, 2024), perfluoroalkyl and 
polyfluoroalkyl substances (Christensen et  al., 2017), and biogenic amines (BAs) in 
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seafood pose significant health risks when consumed (Chaidoutis et  al., 2019). For 
example, certain species of fish (such as those in the Scombridae family) are more prone 
to harbouring histamine‑producing bacteria, if not handled or stored appropriately 
(Lunestad et al., 2011). Other species such as mahi‑mahi, anchovy, amberjack, marlin, 
bluefish, herring and sardine have been implicated in cases of scombroid poisoning 
after consumption; and fish with dark flesh containing free histidine can contain 
elevated levels of histamines (Taylor et al., 2025).

Microplastic and nanoplastic contamination of fish and shellfish poses risks to food 
webs and humans, as some degraded plastics found in edible and non‑edible tissues 
of sea organisms (Akoueson et  al., 2020) contain harmful chemicals. The level of 
toxicity to biota and humans (via consumption) depends on the physical and chemical 
properties of the polymer (Casagrande  et  al., 2024). Microplastic and macroplastic 
particles bioaccumulate through the food chain (Danopoulos et al., 2020), with some 
chemicals linked to diseases in humans affecting the hypothalamus, thyroid, testes and 
ovaries. (Plastic particles have been found in human urine, faeces, placenta and breast 
milk.) Moreover, plastic particles absorb environmental contaminants, which can 
persist through the food chain (Taylor et al., 2025).

Allergens in seafood are another significant health risk. A study by Dorney et al. 
(2024) found that the geographical location of capture or aquaculture influenced the 
allergenic protein profiles of black tiger shrimp (Penaeus monodon), one of the most 
farmed and consumed shrimp species worldwide. Accurate labelling and declaration of 
potential allergens in seafood products are emerging public‑health concerns. Ciguatera 
poisoning, caused by harmful algal blooms attributed to environmental factors and 
climate change, is another food‑safety concern. It is increasingly reported in large reef 
fish and is the most common foodborne illness related to finfish consumption globally 
(Friedman et al., 2008; Kumar‑Roiné et al., 2011). 

Biosecurity breaches can have devastating economic consequences for the seafood 
industry, potentially wiping out entire sectors. For example, Australia prohibited 
the import of uncooked prawns from Asia in early 2017 following an outbreak of 
the deadly white spot disease (Do and Vanzetti, 2018). Such incidents highlight the 
importance of stringent biosecurity measures to protect the industry and ensure the 
safety of seafood products.

TOOLS TO PREVENT THE ISSUE
Current methods to determine seafood provenance include stable isotope ratio 
analysis, gas chromatography and liquid scintillation counting. Multi‑element 
analysis techniques such as inductively coupled plasma atomic emission spectroscopy 
(ICP‑AES) (Anderson et  al., 2010), LA‑ICP‑MS (Sorte et  al., 2013), ICP‑MS, 
inductively coupled plasma optical emission spectroscopy (ICP‑OES), XRF, ion‑beam 
analysis and neutron‑activation analysis, are also used (Gopi et al., 2019a, 2023). Other 
techniques involve NMR spectroscopy (Longobardi et al., 2015, Lolli and Caligiani, 
2024) and high‑resolution mass spectrometry for metabolomics and proteomics. Rapid 
screening methods include ion‑mobility spectrometry (Arce et al., 2014), near‑infrared 
spectroscopy (Woodcock et al., 2008; Zao et al., 2024), hyperspectral imaging, Raman 
spectroscopy (Damiani  et  al, 2020), DNA and fatty‑acid profiling (Ricardo et  al., 
2015), and blockchain methods (Yiannas, 2018). Each of these analytical techniques 
has its own advantages and disadvantages (Gopi et al., 2019a; Hassoun et al., 2020b) 
making it challenging to recommend a single method for detecting seafood fraud. 

A multilayered approach has been tested and proven successful for authenticating 
the origin of seafood. This method combines stable carbon and nitrogen isotope data 
from continuous‑flow isotope ratio mass spectrometry with multi‑elemental data from 
Itrax X‑ray fluorescence scanning and ion‑beam analysis. The data generated by these 
analytical tools are then analysed using artificial‑intelligence‑based machine‑learning 
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models to authenticate the geographical and production origins of seafood. This 
combined methodology shows promise for seafood provenance, demonstrating 
advantages in identifying the geographical source and production methods (such as 
farmed or wild‑caught) of seafood with over 80 percent accuracy (Gopi et al., 2018, 
2019b, 2019c, 2022). By demystifying supply chains, this approach helps protect 
consumers against fraud, providing greater transparency and reliability in the seafood 
industry. The integration of these techniques not only enhances the accuracy of 
provenance identification but also supports the enforcement of certification standards 
and traceability systems.

The following two case studies illustrate the use of lab‑based isotopic and elemental 
analysis, along with portable handheld XRF scanning techniques, to authenticate the 
origins within the supply chain (Figure 6). 

FIGURE 6
Block diagram of the seafood supply chain and the authentication  

of origin using provenance technology
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LABORATORY‑BASED ANALYTICAL METHODS FOR PROVENANCE 
DETERMINATION
This method relies on the combined use of isotopic and multi‑elemental analyses, 
along with machine learning for data analysis, to authenticate the origin of seafood. 
This comprehensive approach ensures accurate identification of the geographical and 
production origins of seafood.

To test the capacity of isotopic and elemental analysis for provenance, nine (n = 9) 
tiger prawn (P. monodon) samples from each of eight locations (four farmed and 
four wild caught), totalling 72 samples, were collected across the eastern seaboard 
of Australia (Figure 7). The samples were transported frozen to Australian Nuclear 
Science and Technology Organisation. Once thawed, a 2  cm² cube of dorsal muscle 
tissue was removed from each sample, cleaned and dried at 60 °C. The dried samples 
were then ground into a fine powder using a titanium‑ball mill grinder for isotopic and 
elemental analyses (Gopi, 2022).

FIGURE 7
Sample collection locations
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Note: Red circles indicate the locations of farmed samples. Blue circles indicate the locations of wild samples. 
Overlapping circles represent proximity between locations.

Stable carbon‑ and nitrogen‑isotope analyses were conducted using a Thermo 
Scientific Delta V Plus continuous‑flow isotope‑ratio mass spectrometer, interfaced 
with a Thermo Fisher Flash 2000 HT EA elemental analyser. Additionally, the 
elemental composition was determined using an Itrax Micro XRF core scanner with 
a molybdenum tube (Gadd et  al., 2018), which produced the relative abundance of  
31 different elements (Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, 
Rb, Sr, Y, Zr, Cd, Sn, Sb, Nd, Hf, Pb, Bi, At and U) present in the samples. 

A machine‑learning model, specifically Random Forest, was applied to the stable 
isotope and multi‑elemental composition data to determine the provenance of tiger 
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prawns. In machine learning, a model is trained on labelled authentic data to learn how 
to classify new, unseen data into the appropriate group. The Random Forest algorithm 
uses an ensemble of decision trees to improve the predictive accuracy of test samples 
(Liaw and Wiener, 2002).

The results of the lab‑based combined stable‑carbon and nitrogen isotope and 
multi‑elemental analysis, along with the application of machine learning, effectively 
distinguished prawns from different origins. There is some overlap between wild‑caught 
prawns from regions 2 and 3 (Figure 8). The overall prediction accuracy for classifying 
geographical origins, including farmed and wild production methods, was 86 percent 
using the Random Forest model.

FIGURE 8
Proximity plots from Random Forest showing the degree of  

separation of samples from different locations

 

PORTABLE SCANNING METHOD FOR PROVENANCE
Laboratory‑based sample analysis is often time consuming and requires specialized 
instruments. To address this, portable, handheld XRF scanning techniques have been 
developed as a first line of defence for seafood provenance, ensuring supply‑chain 
integrity and benefiting the seafood industry and regulatory authorities (Malo et al., 
2023; Martino et  al., 2023). Portable, handheld, X‑ray fluorescence (XRF) scanning 
is a fast, non‑destructive and user‑friendly technique for elemental analysis (Bosco, 
2013; Shackley, 2018; Gałuszka et  al., 2015). This method scans fresh seafood on 
the market floor to identify chemical markers of specific environments, regions and 
farming processes to ensure high labelling accuracy, helping consumers make informed 
purchasing decisions (Martino et al, 2023).
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To authenticate the origin of seafood, market‑size tiger prawns were collected from 
13 harvest sites across three geographically distinct states in Australia: New South 
Wales, Queensland and Northern Territory, representing both farmed and wild‑caught 
origins. New South Wales is known for its temperate climate, Queensland for its 
subtropical conditions, and Northern Territory for its tropical environment, providing 
a diverse range of samples. The samples were transported frozen to the Australian 
Nuclear Science and Technology Organisation laboratory and, once thawed, analysed 
through a handheld XRF scanner. The edible muscle tissue of each tiger‑prawn sample 
was scanned in its raw state. 

The portable, handheld XRF (Model VANTA™) features a sensitive large‑area 
silicon drift detector, a 50 kV X‑ray tube, and a rhodium (Rh) anode. The scanner can 
obtain elemental concentration from Mg to U and light elements through scanning of 
samples.

The instrument was placed within a shielded workbench stand, a portable enclosure 
that ensures no external radiation is present. However, the instrument can also be used 
in a handheld manner, scanning the sample directly. Measurements were obtained using 
the “3‑beam” setting (40kV, 10kV and 50kV respectively), with a 60‑second exposure 
time per beam, totalling a 180‑second scan duration per sample (Malo et  al., 2023). 
The resulting elemental profiles were then analysed using unsupervised statistical 
classification and an artificial‑intelligence‑driven supervised machine‑learning model 
(Liaw and Wiener, 2002). 

Unsupervised statistical analysis (principal component analysis, or PCA) revealed 
that tiger prawns harvested from different states were grouped separately (Figure 9[A]) 
and exhibited significantly different elemental profiles. Similarly, analysis indicated that 
tiger prawns originating from the wild ocean were distinct and separated from their 
farmed (river) counterparts (Figure 9[B]).

FIGURE 9
(A) PCA results showing a separation between samples from New South Wales,  

Northern Territory and Queensland; (B) Scatter plot demonstrating a good distinction 
between farmed (river) and wild (ocean) samples for select elements
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When analysing these elemental data through machine‑learning algorithms, the 
results showed an accuracy of 88  percent for determining geographical origins and 
96 percent for distinguishing between farmed and wild categories. This process enables 
accurate provenance verification, ensuring the integrity of the seafood supply chain and 
aiding regulatory authorities in monitoring and enforcement.

CONCLUSIONS AND RECOMMENDATIONS
While the seafood industry holds immense potential for economic growth and food 
security, it also faces significant challenges related to food fraud. In today’s world, 
where the food supply chain is highly complex and involves numerous actors from 
farm to plate, transparency is more critical than ever. Addressing these challenges 
requires a collaborative effort from all stakeholders and the application of scientifically 
robust analytical techniques to verify the authenticity of seafood products and ensure 
transparency throughout the supply chain.

To combat food fraud, stringent regulations and robust traceability systems are 
essential. Governments and industry stakeholders must work together to implement 
effective monitoring and enforcement mechanisms. This collaboration can help 
establish standards that ensure the integrity of seafood products and protect consumers 
from fraudulent practices. Additionally, consumer awareness and education play a 
crucial role in mitigating food fraud. By understanding the risks and knowing how to 
identify genuine products, consumers can make informed choices and support ethical 
practices within the industry.

Moreover, advancements in technology, such as isotopic and multi‑elemental 
analyses, as well as machine learning, offer promising solutions for enhancing 
traceability and authenticity verification. These technologies can provide real‑time data 
and insights, making it easier to track seafood from its origin to the final consumer. 
Ultimately, a multifaceted approach involving regulation, technology and consumer 
education is key to safeguarding the seafood industry against fraud and ensuring its 
sustainable growth.
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CHAPTER 9

Conclusions 

The impact of food fraud is significant, including the provision of unsafe or 
lower‑quality products that can harm consumer health and undermine trust in the 
food industry and industry authorities. Although the incidence of food fraud varies by 
region, it is a global issue, and the aquatic sector faces unique challenges due to species 
diversity, different costs of production of wild versus farmed products, demand for 
processed products, and product perishability. Although food fraud affects all parts of 
the food value chain, studies have shown high rates of fraud towards the end, with one 
in five samples of aquatic products being mislabelled worldwide. 

Food fraud can lead to food‑safety and food‑quality issues. For instance, species 
substitution and illegal harvest can hide food‑safety hazards, leading to health 
consequences such as exposure to contaminants, exposure to veterinary drugs, food 
poisoning, and even death. Other issues, such as selling previously frozen products as 
fresh products, compromise quality and promote bacterial growth. In addition, there 
are nutritional differences between wild‑caught and farmed fish, containing different 
fatty‑acid profiles and total fat.

There are several tools for fighting food fraud. Among them are tools for verifying 
product traceability, which, when combined with a good understanding of fish 
taxonomy, are the most affordable tools to ensure the origin of the product and 
species identification. Tools of great relevance are national legislation and national and 
international standards, which are vital in defining acceptable products and practices. 

International standards such as those developed by FAO and Codex Alimentarius 
are crucial in combating food fraud, and the ongoing work to develop Codex guidelines 
on the prevention and control of food fraud will provide additional solutions. Private 
food‑safety standards, benchmarked by the GFSI, also play a significant role in setting 
standards for food supply chains that directly or indirectly support the fight against 
food fraud. These standards vary in detail and requirements for mitigation plans. 

Lastly, it is important to highlight the relevant role of analytical tools in combating 
food fraud. Protein‑based methods such as IEF, two‑dimensional electrophoresis 
(2‑DE), ELISA, HPLC and mass spectrometry (MS) are used for species identification 
but have limitations, such as being unsuitable for processed products and requiring 
preliminary selection protocols. DNA‑based methods such as DNA barcoding, PCR, 
or microarrays offer higher specificity and sensitivity and are more effective for food 
authentication, even in highly processed products, but can be affected by PCR bias 
and fluctuating levels of mitochondrial DNA. Innovative DNA‑based methods such 
as next‑generation sequencing (NGS) technologies, including second‑, third‑ and 
fourth‑generation sequencing, can simultaneously sequence all DNA molecules in 
a sample. Applications such as metabarcoding and shotgun sequencing are used for 
seafood authentication. Metabarcoding combines NGS with DNA barcoding to 
analyse genetic variation, while shotgun sequencing avoids PCR bias and accurately 
quantifies the biological content of a mixture of food products. 

The combination of traceability verification, an understanding of fish taxonomy, 
regulatory instruments, standards and analytical tools described in this report can 
significantly reduce fraud in the fisheries and aquaculture sector. Grounded in 
science‑based policy, technological innovation and collaborative governance, these 
tools and mechanisms can help achieve authenticity and integrity within the sector.
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The global fisheries and aquaculture sector, producing over 185 million tonnes of aquatic 
products in 2022 and valued at USD 195 billion, faces growing vulnerability to food fraud. This 

complexity stems from the diversity of traded species (over 12 000) and the involvement of 
multiple inspection authorities across international supply chains, among other things. Common 

fraudulent practices include species substitution, mislabelling, adulteration, counterfeiting, 
and misrepresentation of origin or production methods. These actions, often economically 

motivated, pose serious risks to public health, consumer trust, and marine conservation.
The Food and Agriculture Organization of the United Nations (FAO) and the Joint FAO/IAEA 
Centre of Nuclear Techniqes in Food and Agriculture  have worked together to provide an 

overview of the common food fraud cases in the aquatic sector and the associated health risks. 
The report resulting from this collaboration provides information on tools that can be used to 
fight food fraud for aquatic products, and international case studies illustrate the scope and 
impact of fraud. The report reviews regulatory frameworks as well as standards such as those 
set by Codex Alimentarius, FAO guidelines, and GFSI‑benchmarked schemes, advocating for 

harmonized labelling, mandatory scientific names, and improved traceability. It emphasizes the 
role of consumer awareness and industry transparency in combating fraud.
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