Horizon Europe (2021 - 2027)

Molecular exchange at the plant-fungal interface in arbuscular mycorrhiza symbiosis: SymbioticExchange

Last update: Apr 16, 2024 Last update: Apr 16, 2024

Details

Locations:Germany
Start Date:Aug 1, 2024
End Date:Jul 31, 2029
Contract value: EUR 2,000,000
Sectors:Agriculture, Research, Science & Innovation Agriculture, Research, Science & Innovation
Categories:Grants
Date posted:Apr 16, 2024

Associated funding

Associated experts

Description

Programme(s): HORIZON.1.1 - European Research Council (ERC) 

Topic(s): ERC-2022-COG - ERC CONSOLIDATOR GRANTS

Call for proposal: ERC-2022-COG

Funding Scheme: HORIZON-ERC - HORIZON ERC Grants

Grant agreement ID: 101089250

Objective:

Nutrient acquisition is the basis of life. Arbuscular mycorrhiza (AM) symbiosis of plants with nutrient-delivering fungi is detected in the oldest land plant fossils and considered a prerequisite for plant life on land. It is wide-spread in the plant kingdom and its secondary loss is the exception. AM improves plant nutrition, stress resistance and general plant performance. Breeding AM-optimized crops has significant potential for improving food security and sustainable agriculture. Understanding the molecular underpinnings of AM function is thus imperative. The hallmark of the symbiosis are the arbuscules, highly branched hyphal structures, which develop in root cortex cells. They build a large membrane interface with the plant derived peri-arbuscular membrane (PAM) that surrounds them. Most mineral nutrients are delivered from the arbuscules and taken up via the PAM into plant cells through transporter proteins. In return, the fungi receive up to 20% of the photosynthetically-fixed carbon. The balance in mineral-nutrient-gain-for-carbon-loss influences the effect of the symbiosis in plant growth and yield. However, the full range of transported nutrients, any mechanisms regulating transport and the balance in molecular exchange are unknown. ‘SymbioticExchange’ strategically integrates transcriptomics, phosphoproteomics, metabolomics and protein-protein interaction analysis, with reverse genetics, cell biology and transport physiology to identify novel plant and fungal transporters involved in symbiotic nutrient and metabolite exchange, and to understand the molecular mechanisms of their regulation. ‘SymbioticExchange’ will thus deliver major advances on the range of transporters at the plant-fungal interface, the exchanged goods and the regulation of exchange. This important knowledge-base will provide crucial clues on how nutrient exchange can be tuned for profitable agricultural application of one of the most important symbioses on earth.

Want to unlock full information?
Member-only information. Become a member to access projects awards, find the right consortia partners, subcontractors and more.